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Model and notation

Model

Hierarchical model with cross-profile shrinkage

Enrichment types: latent variable γ

no enrichment (γ = 0)
common enrichment: similar magnitude across profiles (γ = 1)

differential enrichment: different magnitude across profiles (γ = 2)

Notation

Gene expression: Y n×q response matrix

gene-set: Xn×p design matrix

Enrichment measure: Bp×q = (βij) regression coefficients

βij : enrichment for gene-set i in profile j

βij measures the change of average expression in a gene-set

µ: p-vector for average enrichment across profiles
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Conjugate model and parameters

Gene level:
Y − 1α

′
−XB = Ω ∼ N (In, σ

2Ip)

Gene-set level:
α

′
−α

′
0 ∼ N (h, σ2Ip)

B − µp×11
′
q×1 ∼ N (Hγ , σ

2Ip)

Gene-set across profiles:

µ
′
− 0

′
∼ N (σ2,Gγ)

Matrices related to variable selection:

Hγ = DγRDγ and Gγ = F γRF γ , R: correlation D,F : diagonal matrices

d2i =

(
τ2
i0 if γi = 0 or 1

τ2
i1 if γi = 2

f2
i =

(
υ2
i0 if γi = 0

υ2
i1 if γi = 1 or 2

, for i = 1, 2, · · · , p.

τ2
i0 << τ2

i1 and ν2
i0 << ν2

i1, trans-dimensional setting with τ2
i0 = ν2

i0 = 0
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Prior and Posterior

Prior:

π(α,B,γ, σ2) = π(α|γ, σ2)π(B|γ, σ2)π(σ2)π(γ)

π(B|γ, σ2) = π(B|µ,γ, σ2)π(µ|γ, σ2)

σ2 ∼ IG(a, b)

γ product of independent multinomial

Posterior:

marginal posterior π(γ|Y )

π(γ|Y ) involves the sum of the product of residual matrices on B and µ

levels with different shrinkage

Comment : the model framework is very general, the variable selection

approach can be applied to both gene-disease association and gene-set

enrichment studies
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Simulation : from the model with cross-profile signal

X104×100:
- 104 yeast recombinant strains
- randomly selection of 100 genes
- from a real study of yeast
growth under 92 different drugs

40 genes are in the true model:
- 20 genes with similar
association across 92 drugs

- 20 genes with different

association across 92 drugs

generate µ, B|µ with specified

gene types and large signal

simulation from the model with

no cross-profile signal: 3-type

model and previous 2-type model

have similar performance
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Case study

Breast cancer by
Miller et.al.
hgu133A chip
rma normalization

22283 genes
251 samples
190 pathways

top 5% variable genes
1115 genes

54 sets > 5 genes

●

●●
●●
●

●●●

●

●
●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●
●
●

●

●

●

●●●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●●

●

●
●

●
●
●

●●

●
●
●

● ●
●●

●

●
●●

●●

●
●●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●●●

●●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

1 5 9 13 18 23 28 33 38 43 48 53

−2
0

2
4

ridge reg coef: real data

pathway index

be
ta

 

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

−2 −1 0 1 2

0.
4

0.
6

0.
8

1.
0

ridge reg coef: real data

oberved mean(beta)

ob
se

rv
ed

 s
d(

be
ta

)

●

● ●
●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●
● ●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●●

●●

●

●●
●

●
●

●

●

●
●

●

●
●

●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

1 5 9 13 18 23 28 33 38 43 48 53

−5
0

5
10

simulated data

pathway index

tr
ue

 b
et

a

●

●
●●

●

●● ●

●

●

● ●
●●

●

●
●●●

●

●
●

●

●
●

●
●

●

●

● ●●

●

●
● ● ●

●● ●
●

●

●
●

●
● ●

●

●

●

●●
●●

−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

simulated data

mean(true beta)

sd
(t

ru
e 

be
ta

)

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●●

●

●

●

●
●

●
●

●

●●
●

●●

●

●

●

●
●

●

●

●●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●
●

●

●

●

●
●

1 5 9 13 18 23 28 33 38 43 48 53

−1
0

−5
0

5

ridge reg: simulated data

pathway index

be
ta

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

−2 −1 0 1 2 3

1.
0

1.
5

2.
0

2.
5

ridge reg coef: simulated data

oberved mean(beta)

ob
se

rv
ed

 s
d(

be
ta

)

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

0.4 0.6 0.8 1.0 1.2

0.
4

0.
6

0.
8

1.
0

1.
2

theoretical sd vs. overved sd for beta.reg
 real data

sd(beta.reg)

th
eo

re
tic

al
 s

d(
be

ta
.r

eg
)

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●●
●

●●

0.5 1.0 1.5 2.0 2.5

0.
5

1.
0

1.
5

2.
0

2.
5

theoretical sd vs. overved sd for beta.reg
 simulated data

sd(beta.reg)

th
eo

re
tic

al
 s

d(
be

ta
.r

eg
)

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

1.
0

1.
2

1.
4

1.
6

1.
8

obersved sd(beta.reg)/sd(true beta)
 simulatd data

pathway index

ap
pl

y(
be

ta
.r

eg
.s

im
, 2

, s
d)

/a
pp

ly
(b

et
a,

 1
, s

d)

●

●●

●

●

●●

●

●

●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●
●

●
●

−2 −1 0 1 2 3

1
2

3
4

5

ratio overserved/theoretical sd(beta.reg)
 simulated data

mean(beta.reg)

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

1.
5

2.
0

2.
5

ratio A/B:
 A=overserved/theoretical sd(beta.reg) 

 B: oberved sd(true beta)
 simulated data

pathway index

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2 3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

ratio B/A:
 A=overserved/theoretical sd(beta.reg) 

 B: oberved sd(true beta)
 simulated data

pathway index

B
/A

Li, S.M. Common and differential Enrichment 6 / 8



Introduction Model framework Prior and posterior Simulation Case study Summary

Non-conjugate model for signal and noise relationship in enrichment study
A short Markov chain found no gene-set with high posterior probability close to 1
Top differential enriched sets appear to be reasonable: pathway related to stage
of the tumor and P53
Top common enriched sets appear to be mostly in general biological processes

The mean of a gene-set a conservative measure for enrichment?

[1] ”Olfactory transduction”

[2] ”Glioma”

[3] ”Nitrogen metabolism”

[4] ”Long-term potentiation”

[5] ”Thyroid cancer”

[6] ”Cell cycle”

[7] ”Toll-like receptor signaling pathway”

[8] ”Neurodegenerative Disorders”

[9] ”Cell Communication”

[10] ”Melanoma”

[11] ”Pancreatic cancer”

[12] ”Epithelial cell signaling in

Helicobacter pylori infection”

[13] ”Antigen processing and

presentation”

[14] ”Wnt signaling pathway”

[15] ”Apoptosis”

[16] ”Fatty acid metabolism”

[17] ”Glutamate metabolism”

[18] ”Regulation of actin cytoskeleton”

[19] ”Gap junction”

[20] ”Natural killer cell mediated

cytotoxicity”

[21] ”Hedgehog signaling pathway”

[22] ”Adipocytokine signaling pathway”

[23] ”Jak-STAT signaling pathway”

[24] ”Long-term depression”
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26 pathways with sd > 0.5
7 out of 17 p53 pathways
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Summary
The model framework is general
Marginal posterior of the latent variable type can be obtained
Conjugate or non-conjugate setting is flexible

Variable selection can be applied to both gene and gene-set levels

Thanks!
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