Flexible Models for Elucidating Health Disparities

by Eric C. Tassone, J.D., Ph.D., Alan E. Gelfand, Ph.D., & Marie Lynn Miranda, Ph.D.

Children's Environmental Health Initiative

Focus on children

- Focus on issues of environmental justice
 - Shift to preventive interventions

• Emphasis on spatial analytic approaches

- Overview: "What", "how", and "why" of disaggregation
- Modeling Details
- Computing Details and Issues
- Example: North Carolina Detailed Birth Record Data
- Impact on Policy?
- Future Directions

Disaggregation? What, how, and why...

- What:
 - A method that substantially extends inferential possibilities of customary modeling of spatial outcomes data that are areally observed
 - Computationally tractable for large data sets (on the order of 10^5 or more)
 - 'Disaggregated': we disaggregate aggregated counts from usual spatial model into subgroups using individual-level characteristics

• Disaggregation? What, how, and why...

- How:
 - Model subgroups in areal unit using individuallevel data
 - Multi-way contingency table for each areal unit
 - Explained with loglinear model in each areal unit
 - Spatially smooth models via random effects
 - All in a multilevel modeling framework

• Disaggregation? What, how, and why...

- Why?:
 - Other approaches problematic with subgroups
 - Sometimes adjust via covariates or expecteds
 - How to model the subgroups? ANOVA-like approach? Ind. models? Via multivariate CAR priors? Ignore / aggregate?
 - Confined to 'outcome' cond. on 'risk factors'
 - Use available individual-level data..true level?

- Disaggregation? What, how, and why... more why...
 - Flexible inference in multilevel structure
 - Dimension reduction (r << L in general)
 - No need to specify a "response" variable
 - Joint modeling=>arbitrary marginal and cond. probs.
 - Not just conditional probability statements
 - Arbitrary marginal, joint, and cond. statements
 - Flexible aggregation: investigate outcomes/ groups of interest, e.g., racial disparities

Modeling Details

Cell counts:

$$n_l^{(s)} \sim Po(\lambda_l^{(s)})$$

First level:
$$\log(\lambda_l^{(s)}) = \mathbf{X}_l^T \beta_{\mathbf{s}} + \log(n^{(s)}) = \sum_{t=1}^r X_{lt} \beta_{st} + \log(n^{(s)})$$

r

Second level:
$$\beta_{st} = \mathbf{w}_s^T \eta_t + \tilde{\phi}_t^{(s)} = \sum_{u=1}^q w_{su} \eta_{tu} + \tilde{\phi}_t^{(s)}$$

Random effects: $\tilde{\phi}_t^{(s)}$

$$\phi^{(s)} = \phi^0_t + \phi^{(s)}_t$$

And we can plug the second level into the first level for very nice interpretations of the overall model, namely the log counts as...

$$\mathbf{X} oldsymbol{\phi}^0 + \mathbf{X} \mathbf{W}_s oldsymbol{\eta} + \mathbf{X} oldsymbol{\phi}^{(s)} \cdot$$
 (+ offset)

Spatial Smoothing -- The phi_s's

Smoothes county s's beta_st to be like its neighbors (for selected t's).

Spatial Smoothing -- The phi_s's

Smoothes county s's beta_st to be like its neighbors (for selected t's).

- Can be implemented in WinBUGS ... computationally OK
- Many modeling choices in this flexible framework...
 - Design matrix for loglinear model...
 - Which loglin. model parameters get spatial smooth?
 - Which get areal unit-level covariates? Which covars.?
 - What form for spatial random effects?
 - Independent?
 - Multivariate CAR?
 - Attempt some sort of dimension reduction?
- For the example we'll see, we will detail our choices

- NC Detailed Birth Record
 - · 1999-2003
 - No congenital anomalies

Example

- Singletons
- N=463,639, with 32,437 LBW (~6.996%)
- County-level (though finer resolution available)
 - ZCTA ... alternative state analysis?
 - Census Tract, Block Group, Block...focused analysis?

Variables

- X: Maternal race (African Amer. (AA) or white)
- Y: Low birth weight (yes or no)

Example

- Z: Sex of infant (female or male)
- W: Maternal tobacco use (yes or no) "Smoking"
- So $2 \times 2 \times 2 \times 2 = 16$ subgroups in each areal unit

• Let L denote subgroup, I=1, 2, ..., 16

Example

- Let S=1, 2, ..., 100 index counties in NC
- Model provides $p_l^{(s)}$ the probability for subgroup I in county s ... not prob. LBW given X,Z,W, but joint prob..
 - Re-combine into cond., marginal, etc., probs.
 - Disparity measures (e.g., odds ratio)
- Model fit: (XYZ, XYW, YZW)
 - So reduce from 16 to 14 ... more reduction in general

Example: Model

$$\log \lambda_{ijkm}^{(s)} = \gamma^{(s)} + \gamma_i^{X(s)} + \gamma_j^{Y(s)} + \gamma_k^Z + \gamma_m^{W(s)} + \gamma_{ij}^{XY(s)} + \gamma_{ik}^{XZ(s)} + \gamma_{im}^{XW(s)} \gamma_{jk}^{YZ(s)} + \gamma_{jm}^{YW(s)} + \gamma_{km}^{ZW(s)} + \gamma_{ijk}^{XYZ} + \gamma_{ijm}^{XYW} + \gamma_{jkm}^{YZW} + \log(n_{\cdot}^{(s)}).$$

Est. LBW%, Overall (center) and Subgroups

Est. LBW%, Overall (center) and Subgroups

Est. LBW%, Overall (center) and Subgroups

Odds Ratio for Race

We can think of this as a (relative) measure of racial disparity.

- Healthy People 2010 (HP2010)
 - "Eliminate Health Disparities"
 - One of two overarching goals
 - HP2010: Health disparities are "differences that occur by gender, race or ethnicity, education or income, disability, geographic location, or sexual orientation."
 - Today's example:
 - (1) gender (i.e., subgroups),
 - (2) race (i.e., subgroups), and
 - (3) geographic location (i.e., spatial)
 - ... and combines, in local disparity measures

- Also, contextual effects via multilevel model framework
 - E.g., does 'individual' effect of race differ in areas w/ different socioeconomic or demographic features

Measurement of health disparities

- "Methodological Issues in Measuring Health Disparities", NCHS (2005)
- Work of Harper and Lynch
- "Methodological Issues..." emphasize both <u>absolute</u> and <u>relative</u> measures of disparity.
 - OR for race, shown above, is relative measure...
 - ...but flexible methods such as ours can easily accommodate both in some model
 - Also estimates component rates simultaneously

Helpful to see disparity in the context of the component rates...

LBW, all and subgroups

OR race

- How might this inform policies?
 - Different priorities might follow from different relative or absolute disparity... which is higher priority?
 - Different "types" of disparity might might suggest different interventions...
 - How does "two subgroups doing relatively well, but disparity high" compare to "both subgroups doing relatively poorly but disparity low"?
 - Focused intervention in area where one group doing relatively well but other relatively poorly?
 - Alternative measures of disparity? Excess deaths?
 - Proper measuring of interventions...what if both groups rate's go down, but disparity worsens?
 Suggests 'disparity only' measures miss something...

- More individual-level data / more categories
 - E.g., maternal education, an ordered categorical variable
 - Logic functions to reduce dimension
- More contextual variables (areal unit covariates)
 - income, demographics, etc., ...
 - interact w/ ind. level variables? Variables "with themselves"...

• Spatial scale

- Now: Counties,
- Next: ZCTA and beyond...

• Spatial loglinear modeling for point data...

Future Directions

• Spatial scale

- Now: Counties,
- Next: ZCTA and beyond...

Figure 1. Spatial pattern in percent of low birthweight births in North Carolina.

• Spatial loglinear modeling for point data...

Thank you very much!