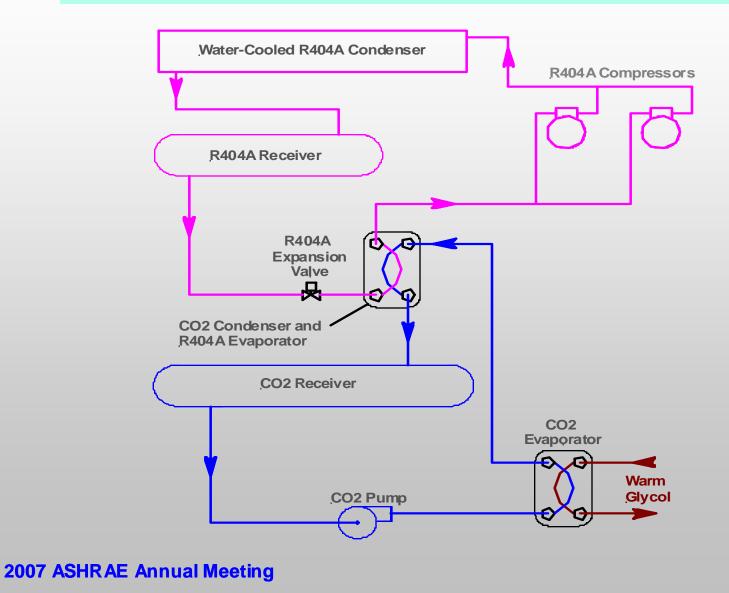
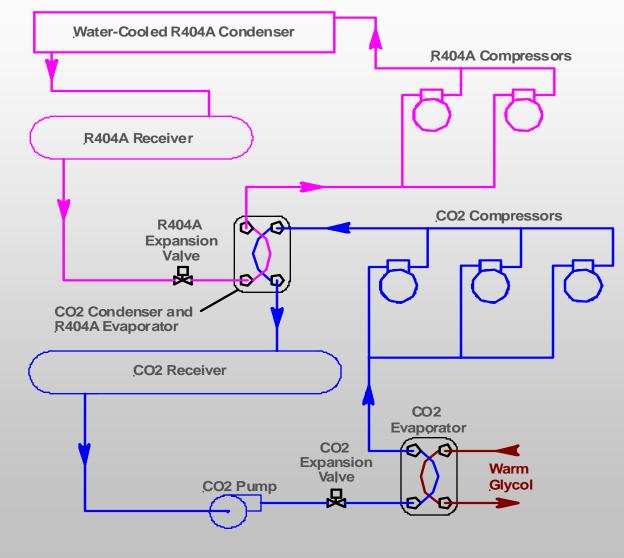


Conserving Natural Resource Use in Buildings


Performance Testing and Comparison of Liquid Overfeed and Cascade CO_2 Systems with R404A Primary – TEST

Doron Shapiro Senior Product Development Engineer Ingersoll-Rand Climate Control Technologies ASHRAE Annual Meeting Long Beach, California


Overview

- Laboratory testing to compare energy use of two types of secondary CO₂ systems.
- 1) Liquid Overfeed: Liquid CO₂ pumped through evaporator and condensed back to liquid.
- 2) Cascade: Direct expansion of CO₂ to superheated state and compressed to intermediate condensing temperature.

Liquid Overfeed System

Cascade System

Equipment

- R404A Compressors: 4-cylinder semi hermetic reciprocating type with suction stop unloaders on one bank of cylinders
- CO₂ compressors: 2-cylinder semi-hermetic reciprocating type
- CO₂ liquid pump: Hermetically sealed pump with motor in housing (no shaft seal)
- Heat exchangers: Brazed plate type
- Flow measurements: Coriolis effect mass flow meters

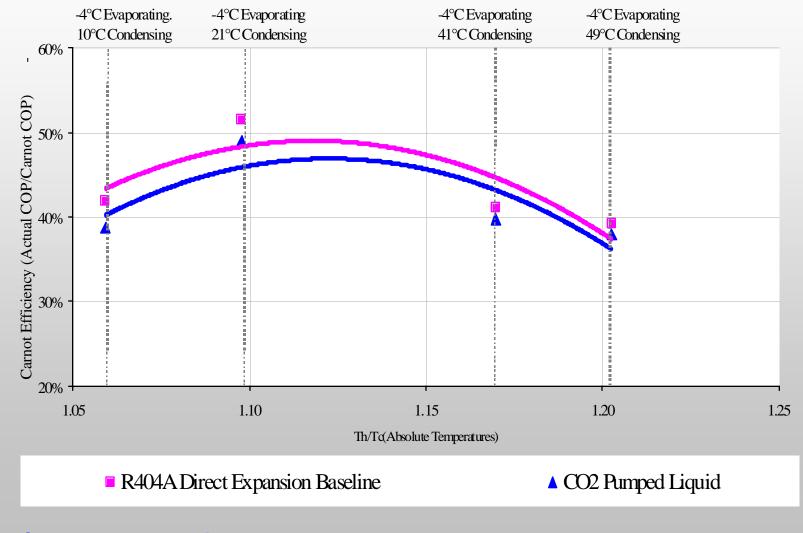
Test Conditions

Run Type	Condensing Temp °C	Evaporating Temp °C
	(R404A Primary)	(CO ₂ Secondary)
Pumped Liquid	49	-32
		-4
	41	-32
		-4
	21	-32
		-4
	10	-32
		-4
Cascade	49	
	41	
	30	-32
	21	
	10	

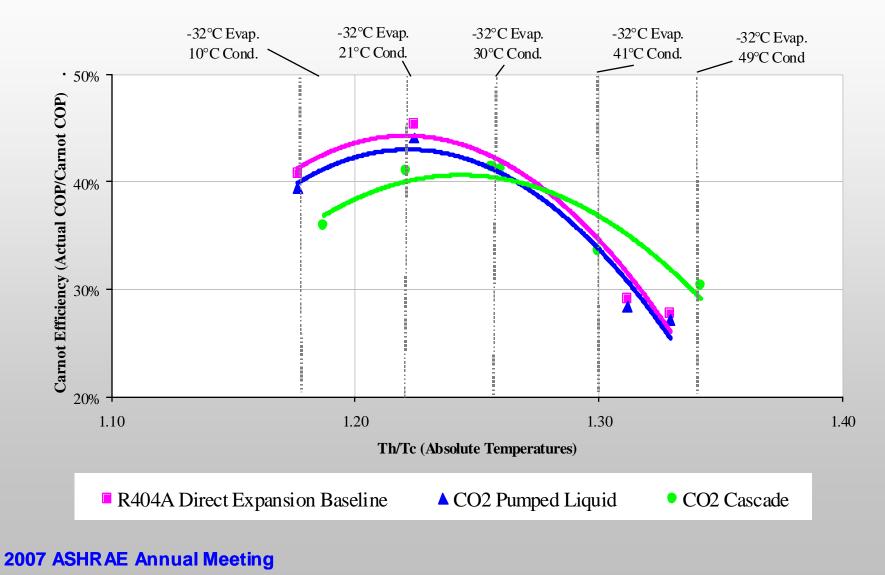
Procedures

- Tests conducted at Ingersoll-Rand Climate Control's Research and Development facility in Bridgeton, MO, USA
- R404A primary condenser water flow adjusted to obtain required condensing temperature
- Liquid Overfeed:
 - R404A evaporating temperature set to obtain required CO₂ temperature.
 - Approximately 1:1 overfeed ratio
- Cascade
 - CO₂ evaporating temperature set by adjusting heat load
 - CO₂ condensing temperature approximately –7°C.
 - CO₂ superheat approximately 30°K (due to relatively warm glycol on hot side of CO₂ evaporator).

Photos of Test Setup



Results


Data corrected for:

- Excessive pressure drop through pressure regulating valves
- Relatively large size and power use of liquid pump used in test system.
- 1°C higher allowable CO₂ evaporating temperature in Liquid Overfeed system
- Relatively small size of CO₂ condenser/R404A evaporator in test system

Results, -4°C CO₂ Evaporating Temperature

Results, -32°C CO₂ Evaporating Temperature

Copyright 2007, Carol C. Korenbrot, Carol.Korenbrot@IHS.gov

Conclusions

- Carnot efficiency of Liquid Overfeed approximately same as R404A baseline.
- Carnot efficiency of Cascade approximately 5% higher at 49°C condensing, but 5% lower at 10°C condensing.
- Results not unexpected. Typically see 2-stage systems such as cascade having higher energy efficiency at high temperature ratios.

Thank You

Contact Information

Clay Rohrer, Doron Shapiro, and Jan Trachta Ingersoll-Rand Climate Control Technologies 12999 St. Charles Rock Road Bridgeton, MO 63044, USA Fax: 314-298-4765 email: clay_rohrer@irco.com, doron_shapiro@irco.com jan_trachta@irco.com

Brian Rees McAlpine Hussmann Limited, 11-17 Walls Road, Penrose P.O. Box 12303, Penrose, Auckland, New Zealand Fax: +64-9-526-6844 email: brian_rees@ap.irco.com