Comorbidity and Survival for Older Men with Prostate Cancer

George J. Stukenborg, Ph.D. Associate Professor Department of Public Health Sciences University of Virginia School of Medicine

Presentation summary

- Why consider comorbid disease?
- Measuring comorbid disease
- Estimating the effects of comorbid disease
- Conclusions

Why consider comorbid disease?

- Comorbidities are conditions that influence patient survival, other than prostate cancer.
- Measurement of comorbid disease and its effects can inform prognosis, treatment decision making, and comparisons of outcomes across institutions.

How should comorbid disease be measured?

- Charlson index (NCI)
- Elixhauser (AHRQ)
- Global ICD-9-CM

Data sources for measuring comorbidity

- Clinical trials
- Prospective cohorts
- Retrospective cohorts

SEER-Medicare

- SEER Cancer registry data
- Tumor stage and grade reported
- Medicare hospital and physicians claims for events before and after diagnosis

- 54,799 men diagnosed in 1995 1998
- Medicare eligible 1 year prior to diagnosis
- Comorbid disease measured by retrospective review of ICD-9-CM reported in Medicare claims prior to diagnosis
- Social Security Administration reported survival known through 2003 (complete 5 year follow-up)

40.3
75.0
13.7
32.0
48.1
3.2
1.1
6.2
9.4

Grade

1: Gleason 2-4, well differentiated	10.6
2: Gleason 5-7, moderately differentiated	58.1
3: Gleason 8-10, poorly differentiated	20.9
4: Undifferentiated, anaplastic	0.5
Unknown differentiated, not stated, or not applicable	9.8

Frequently occurring ICD-9-CM diagnosis codes	
4011: Essential hypertension, benign	14.18
2724: Disorders of lipoid metabolism, unspecified hyperlipidemia	10.20
25000: Diabetes mellitus without mention of complication, type II	10.17
7020: Dermatoses, actinic keratosis	9.33
2720: Disorders of lipoid metabolism, pure hypercholesterolemia	9.28
496: Chronic airway obstruction	8.92
36616: Senile cataract, nuclear sclerosis	8.53
78609: Dyspnea and other respiratory abnormalities	7.64
5997: Hematuria	7.00
4140: Coronary atherosclerosis, of unspecified type of vessel	6.30

Multivariable logistic regression

• Probability of survival at five years, adjusted for model covariates

logit prob(Y=1|X) =
$$\alpha + \beta X$$

Multivariable logistic regression

- Base model: Stage, Grade, Age, RP
- Base model + Charlson index
- Base model + Elixhauser (30 comorbidities)
- Base model + Global ICD (156 comorbidities)

Comparison of validated statistical performance

- C index
- 0.76 Base model
- 0.77 Base model + Charlson index
- 0.78 Base model + Elixhauser
- 0.80 Base model + Global ICD-9-CM

Comparison of validated statistical performance

- Nagelkerke index
- 0.28 Base model
- 0.31 Base model + Charlson index
- 0.32 Base model + Elixhauser
- 0.36 Base model + Global ICD-9-CM

Estimating the effects of comorbid disease

• Logistic regression allows only direct effects

Estimating the effects of comorbid disease

• Reality is more complex

Subpopulation with localized prostate cancer

- Define subpopulation including only potential candidates for radical prostatectomy
- Subset of study population with stages T1,T2, with well or moderately differentiated tumors
- 33,394 patients included in subpopulation
- Quantify predictive information obtained from comorbid disease

Define matched population with propensity score

- Estimate probability of treatment assignment in original study population
- Use estimates to create matched population
- Include only patients in matched population with localized disease
- Assess balance achieved in matched population
- Quantify predictive information obtained from comorbid disease

Propensity matched study population

	RP	Match	P value
Total cases	5682	5771	
Mean age at diagnosis	70.1	70.1	0.8618
Clinical Stage			
T1: Clinically inapparent tumor	42.4	43.4	0.2671
T2: Localized disease	57.6	56.6	0.2671
Grade			
1: Gleason 2-4, well differentiated	7.6	8.0	0.2460
2: Gleason 5-7, moderately differentiated	92.6	92.0 0	0.2460 NIVERSITY VIRGINIA HEALTH SYSTEM

Propensity score matched

	RP	Match	P value
Comorbid disease			
4011: Essential hypertension, benign	16.2	16.3	0.9281
2724: Unspecified hyperlipidemia	13.7	14.3	0.3856
25000: Diabetes mellitus, no complications, type II	8.5	8.5	0.9351
7020: Dermatoses, actinic keratosis	13.6	13.1	0.4602
2720: Pure hypercholesterolemia	14.0	14.9	0.2101
496: Chronic airway obstruction	5.5	5.6	0.8052
36616: Senile cataract, nuclear sclerosis	8.3	7.9	0.4747
78609: Dyspnea, other respiratory abnormalities	5.6	5.5	0.8721
5997: Hematuria	5.7	6.6	0.0413
4140: Coronary atherosclerosis, unspecified	5.0	5.8 UNI	0.0740 VERSITY IRGINIA
		HEA	LTH SYSTEM

Compare predictive information

- Predictive information from comorbidity in subpopulation with localized prostate cancer is confounded by treatment assignment
- Predictive information from comorbidity in the matched population is not confounded, because the matching adjusts for treatment assignment
- Comparing the predictive information in the two groups provides evidence about the amount of confounding present in the subpopulation

Quantifying predictive information

- Proportion of log likelihood explained only by comorbid disease covariates compared to that explained by entire set of model covariates
- Akaike's Information Criterion provides penalty for model complexity
- Method used by Calif et al. to quantify predictive information contributed by coronary disease covariates used to predict survival

Quantifying predictive information

Proportion of log likelihood explained by subset = $\frac{LR_{Subset} \chi^2}{LR_{Global} \chi^2}$

 $LR_{Subset} \chi^2 = [(-2 \log L \text{ intercept only}) - (-2 \log L \text{ covariate subset})]$

 $LR_{Global} \chi^2 = [(-2 \log L \text{ intercept only}) - (-2 \log L \text{ all covariates})]$

Results

Proportion of log likelihood explained by comorbidity	
Localized disease patients in original population	58%
Localized disease patients in matched population	64%

Conclusions

- Global ICD-9-CM model has meaningfully better statistical performance than other models
- Logistic regression model underestimates total effect of comorbid disease on survival at 5 years

Limitations

- Why not Cox Proportional Hazards regression?
- Analysis does not include radiation therapy or other treatment
- Effects of comorbid disease on other covariates not addressed

Whats next?

- Marginal structural models
- Structural equation models

Contributors

- Douglas P. Wagner, Ph.D.
- M. Norman Oliver, M.D.
- Dan Theodorescu, M.D., Ph.D.

Comorbidity and Survival for Older Men with Prostate Cancer

George J. Stukenborg, Ph.D. Associate Professor Department of Public Health Sciences University of Virginia School of Medicine

