Multi-state piecewise exponential model of hospital outcomes after injury

DE Clark, LM Ryan, FL Lucas APHA 2007

Hospital outcomes after serious injury (or illness)

- Most common outcome variables are hospital mortality and length of stay (LOS); LOS is a strong determinant of hospital cost
- But LOS will be short in the least injured (who go home) and the most injured (who die)
- Furthermore, many injured patients (especially older) go to long-term care (LTC)
- How can we predict LOS accurately and analyze the factors affecting it?

Methods

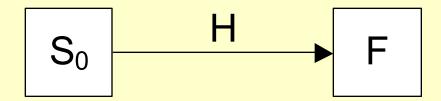
- Nationwide Inpatient Sample, 2002
- 306,303 cases, principal diagnosis injury
- Excluded 15.1% for missing age, sex, Ecode, or outcome
- Calculated Injury Severity Score (ISS) and Charlson Comorbidity Score
- "Piecewise" observation periods: 1-2 days,
 3-7 days, 8-11 days, 12+ days

Time-to-event models

- Usually anticipate an adverse event, thus "Failure-time analysis", "Survival analysis",
- Terminology also includes the potentially confusing terms "hazard" and "risk"
- However, the same mathematics can be used to study time until a generally favorable event, such as leaving the hospital, i.e. LOS

A basic two-state model

- S is the population still hospitalized, starting at S₀
- F is those who have left the hospital
- H is the "hazard", or instantaneous probability, that a patient still in state S will enter state F

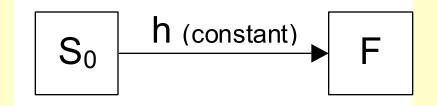


Proportional hazards

- So far, we have made no assumptions about H
- A common (verifiable) assumption is that $H = H_{base} * Z$, where there is an incidence rate ratio or "hazard ratio" $Z = z_1 * z_2 * ... z_k$
- This is the famous (Cox) proportional hazards (PH) model

An exponential model

- Parametric models make assumptions about the functional form of H
- One of the simplest assumptions is that H is a constant, say h
- This leads to an exponential model (which can also be a proportional hazards model with h = h_{base}*Z)

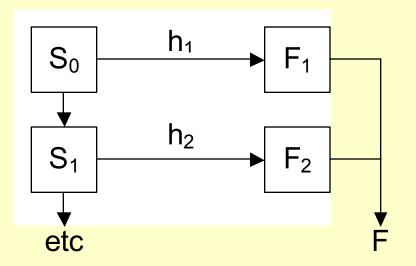


A little calculus

- dS/dt = hS
- (1/S) dS = h dt
- Log S = h t + C
- C=0 and h<0, given that S₀=1 and S_∞=0, so we can write S = e^{-ht}, or S(t) = exp(-ht)
- If a time-to-event variable is exponential, the number of occurrences in a given time period is Poisson
- $P(X=x) = e^{-h\Delta t} (h\Delta t)^x / x!$
- This means we can fit an exponential model using standard software for Poisson regression

Piecewise exponential models

- The assumption of a constant hazard is usually unrealistic
- But by considering constant hazards for several shorter time periods, we can develop very flexible PWE models
- $S_i(t) = exp(-h_i(t-t_{i-1}))$

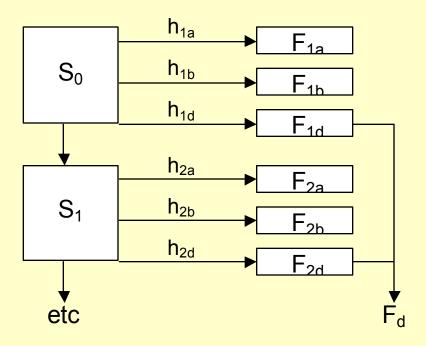


Competing risks

- If there are different terminal events, you have competing outcomes or "risks"
- For LOS, you can exclude deaths or LTC transfers, you can "censor" them, or you can lump outcomes together, but all these approaches have problems
- A better model would analyze outcomes separately as well as in combination

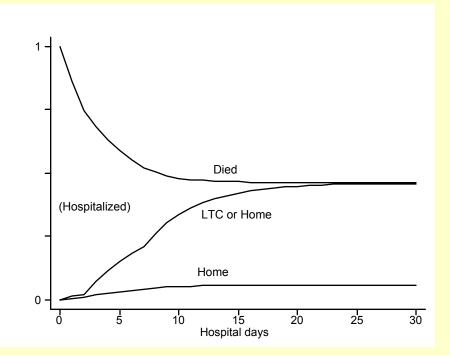
A multi-state piecewise exponential model for hospital outcomes after serious injury

- Separate PWE models for (a) discharge home, (b) discharge to LTC, and (d) death
- PH (Poisson) covariates for each transition and time period
- Calculate LOS and cumulative mortality



Computation and depiction

- The functional form and parameters of all outcomes are specified in the model
- With a little more math, we can calculate LOS and other summary statistics
- Outcomes may also be graphed



Results by injury mechanism

	Knife	Gun	MVC	Other
LOS (days)	3.2	6.4	5.3	4.7
Predicted	3.4	6.6	5.5	4.9
LTC	.07	.08	.13	.42
Predicted	.08	.09	.15	.43
Died	.007	.087	.026	.022
Predicted	.007	.078	.026	.023

Results by injury severity

	ISS<9	ISS 9-15	ISS 16-24	ISS 25-75
LOS (days)	3.4	6.0	8.7	12.7
Predicted	3.5	6.2	8.8	13.0
LTC	.18	.55	.31	.29
Predicted	.20	.52	.33	.30
Died	.005	.024	.068	.358
Predicted	.006	.025	.070	.337

Covariate effects (increased rate)

	Home	LTC	Died
Days 1-2	Younger, male, Low ISS, Charlson=0 Not gun, not MVC	Older, female Low ISS, Charlson>0 Knife, not MVC	Older, male High ISS, Charlson>1 Knife, gun, MVC
Days 3-7	Younger, male Low ISS, Charlson=0 Knife, not gun	Older, female Low ISS, Charlson<2 Not knife, gun, or MVC	Older, male High ISS, Charlson>0 Not knife
Days 8-11	Younger Low ISS, Charlson=0 Knife	Older, female ISS<15 Not knife, gun, or MVC	Older, male High ISS, Charlson>1 Knife, not MVC
Days 12-	Younger, female Low ISS, Charlson<2 Knife or gun	Older, female ISS<15, Charlson=0 Not knife, gun, or MVC	Older, male High ISS, Charlson>0 Not MVC

References

- Clark DE, Ryan LM, Lucas FL. Multi-state piecewise exponential model of hospital outcomes after injury. J Applied Statistics 2007 (in press)
- Clark DE, Lucas FL, Ryan LM. Predicting hospital mortality, length of stay, and transfer to long-term care for injured patients. J Trauma 2007;62:592
- Escolano S, et al. A multi-state model for evolution of intensive care unit patients: Prediction of nosocomial infections and deaths. Stat Med 2000:19:3465
- Clermont G, et al. Dynamic microsimulation to model multiple outcomes in cohorts of critically ill patients. Intensive Care Med 2004;30:2237
- Horrocks J, Thompson ME. Modeling event times with multiple outcomes using the Wiener process with drift. Lifetime Data Analysis 2004;10:29