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Non-independence i Injury.
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¢ Often compute incidence rates from injury surveillance data
» Assumes counts follow independent Poisson process

¢ THIS IS OFTEN NOT TRUE!

» mass fatality events resulting from natural disaster or terrorism
» multiple fatalities in a car crash (FARS data)

» mass homicide-suicide events stemming from intimate partner
violence (NVDRS data)

» multiple injuries to the same athlete (NCAA data)

¢ More realistic to assume negative binomial process
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I\e4 What IS Over-Dispersion & tHow
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¢ Overdispersion
» Caused by positive correlation between the counts
» Extra-Poisson variation
» Small amounts of over-dispersion are okay

¢ Poisson regression models:

» are over-dispersed if Pearson chi-square/df > 1.5
> Betas (In rates) are okay
» Standard errors are too small
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iaad Dealing with Over-Dispersion

1. PSCALE or DSCALE - fit the Poisson model, then Scale the SEs

» simply scale-up the Standard Errors to account for the over-
dispersion, as an additional step after the standard Poisson
model-fitting process

» Multiply the estimated variance from standard Poisson regression
by either Pearson y*/df or deviance/df

> V =V

> ¢ = Pearson y*/df or deviance/df

> In SAS, use GENMOD’s PSCALE (y%) or DSCALE (deviance).

» In STATA, use XTPOISSON with SCALE(X2) option .
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Pealing with Over-Dispersion

2. Negative Binomial regression with a NB2 model
» In NB2, the variance is obtained by combining the dispersion
parameter o with a quadratic function of the mean
» V =Vo=p(1+ap) = p + ap’
» Thus, the variance is obtained by scaling the mean (u) by a
function of the mean (1+apu)
» In STATA, use NBREG

» In SAS, use PROC COUNTREG (experimental) or PROC
GENMOD
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witad Dealing with Over-Dispersion

3. Negative Binomial regression with a NB1 model

» Multiply the variance by an over-dispersion parameter (o)
estimated during the model-fitting process

» Use the dispersion parameter (a) to scale the mean by a fixed
quantity (1+a)

> V=V =p(1+ta) = p+ap

» In STATA, use NBREG

» In SAS, use PROC COUNTREG (experimental)
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Binomial Distribution

Recall that the binomial distribution:

— Y (1—
() (y}p( ?)

describes the number of successes (y) in n trials, where the trials are
statistically independent and have a binary outcome (success or failure)
with the constant probability of success (p) that is fixed between trials. The
binomial distribution has mean np and variance np(71-p).
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Negative Binomial Distripution

The negative binomial distribution describes a similar situation. Instead of
describing the number of successes (y) in n trials, it describes the number
of the trial on the which " success occurs, where each success is
preceded by y-1 failures. Specifically,

(v L
p(y)—(r_ljp (1-p)

with the probability of success (p) fixed between trials, where y=r, r+1,

.
r+2,... etc. The negative binomial distribution has mean ; and variance
r(d-p)

2

p
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Negative Binomiall Regression

The negative binomial regression model:
¢ Accommodates heterogeneity in the counts
¢ Gamma mixture of Poisson random variables

E[/”xl'"xkari] — M-T,r — eﬁo+ﬁ1 1t O X+

The terms inred (7., £.) are included in the negative binomial regression

model but are not included in Poisson regression. These are the terms that
model over-dispersion.

Here, 7. = e” . If we assume that Elr | = Ele =1 thenthe T

L : : : -1
follow a gamma distribution with mean 1 and variance 91 , where g>0.
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NCAA Soccer Injury Data

¢ Injury data from NCAA'’s Injury Surveillance System (ISS)
» Mens and womens soccer, 15 years (1988-89 to 2002-03)

¢ Variables
» Sex (mens vs. womens soccer)
» Year (linear trend)
» Game vs. Practice exposure (GAMEPRAC)
» Division (D1, D2, D3)
» Time of Season (Pre-Season, Regular In-Season, Post-Season)

¢ Outcome = injury rate.
» Numerator are number of injuries in each cell
» Denominator are number of athlete-exposures (aka A-ESs)
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NCAA Soccer Injury Data

Tabular dataset

» One observation on dataset represents each cell in the m-
way table formed by 2 sexes X 16 years X 2 exposure types
X 3 Divisions X 3 time of season = 536 observations

» If this dataset were further disaggregated down to the
school-level or athlete-level, there might be less over-
dispersion.
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2ANCAA Soccer Injury Data

¢ Model 1: Standard Poisson regression
» Model 1 ignores over-dispersion

¢ Model 2: PSCALED Poisson regression
¢ Model 3: NB2 negative binomial regression

¢ Model 4: NB1 negative binomial regression
» Models 2-4 account for over-dispersion

¢ Summary Table for Game Vs. Practice Variable
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Model 1. Standard Peisson

regression

proc genmod data=ncaa.ncaatsl4d ve;
/* Regression on Injury Rates for Historical NCAAR data*/
class division season gameprac sex
model injuries = sex year gameprac division season / link=log
dist=polisson offset=log AEs;

ruan

/Over- A

dispersion
2248.6887 Is clearly
508 | 2248.6887|  4.2589 present
528| 2062.2894|  3.9059 Siglce
528| 2062.2894|  3.9059 Xo/df>>1
83699.4450 J
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Model 1. Standard Peisson

regression

RESULTS

Soccer Exp(ln RR MSO vs WSO) 1.02 1.00 1.05 1.05 2.65 0.1036
Soccer Exp(In RR Av Ann 10Y1) 1.03 1.00 1.06 1.06 3.59 0.0581
12970.55 <.0001

6.44 0.0112

98.50 <.0001

Soccer Exp(In RR PreSeason vs InSeason) 2.61 2.53 2.69 1.06 3619.82 <.0001
Soccer Exp(In RR PostSeason vs InSeason) 0.69 0.63 0.75 1.19 70.01 <.0001

Interpretation: The rate of injury is 5.6 times higher in games than in
practices (95%ClI: 5.4, 5.7; CLR=1.1).

Problem: These Cls are falsely narrow because the model does not
account for the over-dispersion.
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Model 2: PSCALED Poisson

regression

titlel'PScaled Polsson Regression on Injury Rates for Historical NCAA data';
proc genmod data=ncaa.ncaa8%04 ve6;
/* Regression on Injury Rates for Historical NCAA data*/

class division season gameprac sex ; /f_ -\\

format division div. season sea. gameprac gp. ;i The |Og-

model injuries = sex year gameprac division season ||ke||h00d

/ pscale link=log dist=poisson offset=log AEs

run ; prOduced by
GENMOD is
incorrectin
SAS ver9.X

2248.6887
528 575.7231 1.0904
528 | 2062.2894 3.9059
528 528.0000 1.0000
21429.2461
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Model 20 PSCALED Polsson
regression

Soccer Exp(ln RR MSO vs WSO) 1.02 0.97 1.07 1.11 0.68 0.4102
Soccer Exp(ln RR Av Ann 10YT) 1.03 0.97 1.09 1.13 0.92 0.3377
3320.80 <.0001

1.65 0.1991

25.22 <.0001

Soccer Exp(ln RR PreSeason vs InSeason) 2.61 245 2.78 1.13 926.77 <.0001
Soccer Exp(ln RR PostSeason vs InSeason) 0.69 0.58 0.82 1.41 17.93 <.0001

Interpretation: The rate of injury is 5.6 times higher in games than in
practices (95%CI: 5.3, 5.9; CLR=1.1).

Problem: These Cls are wider, and more realistic, than the Cls from
standard Poisson regression.
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Model 3: NB2 negative

pinomial regression

proc genmod data=ncaa.ncaa8%04 veé;
/* Regression on Injury Rates for Historical NCAA data*/
class division season gameprac sex ;
model injuries = sex year gameprac division season / link=log

dist=negbin offset=log AEs;
run ;

...1Is the same as...

proc countreg data=ncaa.ncaa8904 veo type=negbin ;
/* Regression on Injury Rates for Historical NCAA data*/

format gameprac gp.
model injuries = sex year GamePrac Division2]1 Division3Z2 /NBZ model \

PreVsReg PostVsReg / offset=log AEs ;
run ; - has done a
great job of
addressing
over-
657.4756 dispersion

528 657.4756 1.2452
528 560.4033 1.0614
528 560.4033 1.0614
84156.9558
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Model 3: NB2 negative

pinomial regression

0.0000

0.0000

0.0000 0.0000
1 0.1119 0.0122| 0.0880| 0.1357

ﬁlpha (over-dispersion)=0.1D

Note: The over-dispersion parameter (alpha) = 0.11. This parameter is
much larger than its SE (0.01) and is greater than zero according the Wald
test, supporting the idea that this is better model for the data than the

standard Poisson regression.
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Model 3: NB2 negative
pinomial regression

Soccer Exp(ln RR MSO vs WSO) 1.04 0.96 1.12 1.16 0.93 0.3362
Soccer Exp(In RR Av Ann 10YT1) 1.01 0.93 1.10 1.19 0.07 0.7880
1580.75 <.0001

0.98 0.3231

15.52 <.0001

Soccer Exp(ln RR PreSeason vs InSeason) 2.22 2.05 2.42 1.18 355.03 <.0001
Soccer Exp(In RR PostSeason vs InSeason) 0.71 0.63 0.80 1.26 33.31 <.0001

Interpretation: The rate of injury is 4.9 times higher in games than in
practices (95%CI: 4.5, 5.2; CLR=1.2).

Problem: These Cls are even wider, suggesting that this model does a
better job of accounting for over-dispersion than the PSCALE method.
However, the rate ratio point estimate is now 4.9 instead of 5.6!
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UN@ Model 4: NB1 negative
M binomiall regression

NB1 is not currently supported in GENMOD, so use experimental PROC
COUNTREG

%

proc countreg data=ncaa.ncaat904 ve type=negbinl ;
/* Regression on Injury Rates for Historical NCAA data*/

format gameprac Jp. ;
model injuries = sex year GamePrac Division2l Division3Z
PreVsReg PostVsReg / offset=log REs ;

ran ;
Over-dispersion \
Parameter Estimates parame ter

Standard Approx alpha=4. This is
Parameter Estimate Error| tValue| Pr=> |t a linear function
Intercept | -9.368285| 6.663497| -1.41| 0.1598 of the mean and
sex -0.031520| 0.029092 -1.08| 0.2786 s not Comparable
year 0.001001| 0.003335|  0.30| 0.7641 to the quadratic
GamePrac | 1681534| 0031083| 54.10| <.0001 NBZ2 function
Division21 | -0.037795| 0.038847| -0.97| 0.3306 (alpha=0.11) /
Division31 | -0.153204| 0.032000| -4.79| <.0001
PreVsReg | 0.922246| 0.033212| 27.77| <.0001
PostVsReg | -0.097082| 0.077732| -1.25| 0.2117
_Alpha 4.002387| 0344519 11.62| <.0001
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pinomial regression

There is no ESTIMATE statement in COUNTREG, but we can readily

compute rate ratios and Cls in Excel:
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Approx
Standard Rate

Parameter | Estimate Error | t Value | Pr > [t Ratio | LCL | UCL | CLR
Intercept | -9.368285 | 6.663497 -1.41 0.1598
sex -0.03152 0.029092 -1.08 0.2786 0971 0.92 1.03 1.12
year 0.001001 0.003335 0.3 0.7641 1.00 ] 0.99 1.01 1.01
GamePrac | 1.681534 0.031083 54.1 <.0001 537 5.06 5.71 1.13
Division21 | -0.037795 0.038847 -0.97 0.3306 096 | 0.89 1.04 1.16
Division31 | -0.153204 0.032 -4.79 <.0001 0.86 | 031 0.91 1.13
PreVsReg 0.922246 0.033212 27.77 <.0001 2.51 2.36 2.68 1.14
PostVsReg | -0.097082 0.077732 -1.25 02117 0.91 0.78 1.06 1.36
_Alpha 4.002387 0.344519 11.62 <.0001



Summary. Trable for Game: Vs.
Practice Variable

Standard Poisson 1 556 540 5.73 1.06
Scaled Poisson 2 556 5.25 590 1.12

¢ Different models give very different rate ratios and 95%Cls !!

¢ Prefer models 2 & 4 (NB1 and scaled Poisson)
» Clwide; RR credible
» Cltoo narrow in model 1 (standard Poisson)
> RR biased downwards in model 4 (NB2)
» NB2 is sensitive wide variations in denominator counts
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Negative binomial models are preferred to Poisson models
when:

» there is significant over-dispersion in the data

» the betas from negative binomial model track closely to the betas
from Poisson model

» The SEs from negative binomial are larger than the SEs from
Poisson

Negative binomial provides an SE that reflects extra-
Poisson variation

» larger than the SE from standard Poisson regression

Scaled Poisson regression (PSCALE or DSCALE Poisson)
» Often performs as well as negative binomial
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Other Approaches

¢ Mixed Poisson .... school-level random intercepts
¢ Compound Poisson process

Epidemiologic Perspectives & 0)
Innovations BioMed Certra

Methodology

Applying the compound Poisson process model to the reporting of
injury-related mortality rates

Scott R Kegler*

Abstract

Injury-related mortality rate estimates are often analyzed under the assumption that case counts
follow a Poisson distribution. Certain types of injury incidents occasionally involve multiple
fatalities, however, resulting in dependencies between cases that are not reflected in the simple
Poisson model and which can affect even basic statistical analyses. This paper explores the
compound Poisson process model as an alternative, emphasizing adjustments to some commonly
used interval estimators for population-based rates and rate ratios. The adjusted estimators involve
relatively simple closed-form computations, which in the absence of multiple-case incidents reduce
to familiar estimators based on the simpler Poisson model. Summary data from the National
Violent Death Reporting System are referenced in several examples demonstrating application of
the proposed methodology.
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Why bother to get It right?

“Knowledge is not a loose-leaf notebook of facts.
Above all, it is a responsiblility for the integrity of what
we are, primarily of what we are as ethical creatures.”

“Every judgment in science stands on the edge of error
and is personal. Science is a tribute to what we can
know although we are fallible.”

- Jacob Bronowski, 1908-1974
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