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Multivariate Regression

Y(Nxp) = X(Nxk) B(kxp) + ε(Nxp)

where Y is a matrix of p dependent 
variables, X is a k-dimensional design 
matrix, and ε is an error matrix, which 
is assumed to be distributed as: 

ε(Nxp) ~ N(Nxp)(0,Σ⊗IN)
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Multivariate Regression

Multivariate regression theory using 
ordinary least squares (OLS) assumes 
that all of the B coefficients in the model 
are unknown and to be estimated from 
the data as:

-1ˆ ( ) ( )′ ′= X X X YΒ
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SUR Models
Zellner (1962) formulated the Seemingly 

Unrelated Regression (SUR) model as p
correlated regression equations, which has 
also been referred to as multiple-design 
multivariate (MDM) models (Srivastava, 
1967). 

The p regression equations are “seemingly 
unrelated” because taken separately the error 
terms would follow standard linear OLS linear 
model form. 
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Multiple Univariate Regression

Calculating p separate standard OLS 
solutions ignores any correlation among 
the errors across equations; however, 
because the dependent variables are 
correlated and the design matrices may 
contain some of the same variables there 
may be “contemporaneous” correlation 
among the errors across the p equations. 
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SUR Models
SUR models are applied when there are 

several equations, which appear to be 
unrelated but are related by the fact 
that: 

(1) some coefficients are the same or 
assumed to be zero; 

(2) the disturbances are correlated across 
equations; and/or 

(3) a subset of right hand side variables 
are the same. 

Copyright 2007, T. Mark Beasley, mbeasley@uab.edu



SUR Models
SUR Models allow each of the p dependent 

variables to have a different design
matrix with some of the predictor 
variables being the same. 

SUR models allow for a variable to be 
both in the Y and X matrices, which has 
particular relevance to Path Analysis.
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E[Y(Nxp)]= {X1(Nxm1) β1 (m1x1) , X2(Nxm2) β2 (m2x1) , Xj(Nxmj) βj(mjx1) , Xp(Nxmp) βp(mpx1) } 

where M is the total number of parameters estimated 
over the p models,

M=
1

p

j
j

m
=
∑

SUR Model

   E(yv)   =    D       Β  
   ŷ1  (Nx1)   X1 0 0 0 0 0    β1(m1x1)  
   ŷ2  (Nx1)   (Nxm1) X2 0 0 0 0    β2(m2x1)  
E(yv) =  . . .   =   (Nxm2) . . . 0 0 0      
(Npx1)   ŷj  (Nx1)      Xj . . . 0    βj(mjx1)  
   . . .      (sym)  (Nxmj)  Xp      
   ŷp  (Nx1)        (Nxmp)    βp(mpx1)  
   (Npx1)      (NpxM)        (Mx1)  
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(Npx1)(NpxNp)(MxNp)(NpxM)(NpxNp)(MxNp)(Mx1)
yv]Q-1[ D′D]-1Q-1[ D′=Β̂

Q is weight matrix based on the residual covariance 
matrix of the Y variables and is formed as:

( x )( x )

ˆ
Np pNp Np

= ⊗Q IΣ

SUR Model
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Path Model
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ŷ1 = β1(y2) y2 +  β1(y3) y3 + 0 X1  + β1(X2) X2 + 0 X3 
ŷ2 =   β2(X1) X1  + β2(X2) X2 + 0 X3 
ŷ3 =   0 X1  + β3(X2) X2 + β3(X3) X3 
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Path Model
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β1(y2) 

β1(y3) 
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β2(x1) 

β2(x2) 
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  E(yv)   =    D        Β  
  ŷ11   y21 y21 x21 0  0 0  0   β1(y2)  
  ŷ12   y22 y22 x22 0  0 0  0   β1(y3)  
   . . .   . . . . . . . . .         β1(X2)  
  ŷ1N   y2N y21 x21 0  0 0  0     
  ŷ21    (Nx3)  x11  x21 0  0   β2(X1)  
E(yv) =  ŷ22   =     x12  x22 0  0     
   . . .      . . .  . . .      β2(X2)  

(3Nx1)  ŷ2N      x1N  x2N 0  0     
  ŷ31    (sym)  (Nx2)   x21  x31     
  ŷ32         x22  x32   β3(X2)  
   . . .         . . .  . . .     
  ŷ3N        (Nx2) x2N  x3N   β3(X3)  
  (3Nx1)     (3Nx7)        (7x1)  
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