Seemingly Unrelated Regression (SUR)

 Models as a Generalized Least Squares (GLS) Solution to Path Analytic Models
T. Mark Beasley

University of Alabama at Birmingham

Paper presented at the annual meeting of the American Public Health Association November 7, 2007 Washington, DC Session 5147.0

Multivariate Regression

$$
\mathbf{Y}_{(N x p)}=\mathbf{X}_{(N x k)} \mathbf{B}_{(k x p)}+\boldsymbol{\varepsilon}_{(N x p)}
$$

where \mathbf{Y} is a matrix of p dependent variables, \mathbf{X} is a k-dimensional design matrix, and $\boldsymbol{\varepsilon}$ is an error matrix, which is assumed to be distributed as:

$$
\boldsymbol{\varepsilon}_{(N \mathrm{x} p) \sim} \boldsymbol{N}_{(N \mathrm{x} p)}(\mathbf{0}, \Sigma \otimes \mathbf{I} N)
$$

Multivariate Regression

Multivariate regression theory using ordinary least squares (OLS) assumes that all of the \mathbf{B} coefficients in the model are unknown and to be estimated from the data as:

$$
\hat{\mathbf{B}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\left(\mathbf{X}^{\prime} \mathbf{Y}\right)
$$

SUR Models

Zellner (1962) formulated the Seemingly Unrelated Regression (SUR) model as p correlated regression equations, which has also been referred to as multiple-design multivariate (MDM) models (Srivastava, 1967).

The p regression equations are "seemingly unrelated" because taken separately the error terms would follow standard linear OLS linear model form.

Multiple Univariate Regression

Calculating p separate standard OLS solutions ignores any correlation among the errors across equations; however, because the dependent variables are correlated and the design matrices may contain some of the same variables there may be "contemporaneous" correlation among the errors across the p equations.

SUR Models

SUR models are applied when there are several equations, which appear to be unrelated but are related by the fact that:
(1) some coefficients are the same or assumed to be zero;
(2) the disturbances are correlated across equations; and/or
(3) a subset of right hand side variables are the same.

SUR Models

SUR Models allow each of the p dependent variables to have a different design matrix with some of the predictor variables being the same.

SUR models allow for a variable to be both in the \mathbf{Y} and \mathbf{X} matrices, which has particular relevance to Path Analysis.

SUR Model

$\mathrm{E}\left[\mathbf{Y}_{(N \times p))}\right]=\left\{\mathbf{X} \mathbf{1}_{(N \times m 1)} B_{1_{(m 1 \times 1)}}, \mathbf{X}_{2_{(N \times m 2)}} B_{2_{(m 2 \times 1)}}, \mathbf{X}_{\boldsymbol{j}_{(N \times m)}} B_{j_{(m j \times 1)}}, \mathbf{X}_{p_{(N x m p)}} B_{p_{(m p \times 1)}}\right\}$

where \boldsymbol{M} is the total number of parameters estimated over the p models,
$\boldsymbol{M}=\sum_{j=1}^{p} m_{j}$

SUR Model

$$
\underset{(M \times 1)}{\hat{\mathbf{B}}}=\underset{(M \times N p)}{\left[\begin{array}{ccc}
\mathbf{D}^{\prime} & \mathbf{Q}^{-1} & \mathbf{D}
\end{array}\right]^{-1}} \underset{(N p \times N p)}{(N p \times M)} \underset{(M \times N p)}{\left[\begin{array}{lll}
\mathbf{D}^{\prime} & \mathbf{Q}^{-1} & \mathbf{y}_{\mathbf{v}}
\end{array}\right]}
$$

\mathbf{Q} is weight matrix based on the residual covariance matrix of the \mathbf{Y} variables and is formed as:

$$
\underset{(N p \times N p)}{\mathbf{Q}}=\sum_{(p \times p)}^{\hat{n}} \otimes \mathbf{I}_{N}
$$

Path Model

$\begin{array}{lllllllll}\hat{\mathbf{y}}_{1}= & \beta_{1(\mathbf{y} 2)} \mathbf{y}_{2}+ & \beta_{1(\mathbf{y} 3)} \mathbf{y}_{3}+ & \mathbf{0} & \mathbf{X}_{1} & +\beta_{1(\mathbf{X} 2)} & \mathbf{X}_{2}+ & \mathbf{0} & \mathbf{X}_{3} \\ \hat{\mathbf{y}}_{2}= & & \beta_{2(\mathbf{X} 1)} & \mathbf{X}_{1} & +\beta_{2(\mathbf{X} 2)} & \mathbf{X}_{2}+ & \mathbf{0} & \mathbf{X}_{3} \\ \hat{\mathbf{y}}_{3}= & & \mathbf{0} & \mathbf{X}_{1} & +\beta_{3(\mathbf{X} 2)} & \mathbf{X}_{2}+ & \beta_{3(\mathbf{X} 3)} & \mathbf{X}_{3}\end{array}$

