Confounding of indirect effects in the "real world"

Danella Hafeman

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

What is an indirect effect?

Main Effect:

Exposure (X) \longrightarrow Disease (Y)

- Biases the indirect and direct effects, but not the main effect
- Problematic even when exposure (X) is randomized

"Real world" impact of confounding?

- A confounder of the mediator can cause bias (e.g. Cole and Hernan 2002)
- But how much bias? How much confounding would it take to explain the observed indirect effect??

"There is an urgent need for further methodological research that determines the likely magnitude and direction of bias in the estimation of direct and indirect effects" (Blakely 2002)

Study Aims

Question:

How much of a threat does confounding of the mediator pose under "real world" circumstances?

- Basic Approach:
 - Develop sensitivity analysis program
 - Re-assess results from two well-known mediation studies

Methods: Sensitivity Analysis

- Inputs
- Outputs

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

Inputs: Observed Risks

- Risk of the Mediator
 - ... in the unexposed: M0
 - ... in the exposed: M1
- Risk of Disease
 - ... in the unexposed, mediator-negative: Y00
 ... in the exposed, mediator-negative: Y10
 ... in the unexposed, mediator-positive: Y01
 ... in the exposed, mediator-positive: Y11

Inputs: Confounder Characteristics

Confounder Prevalence

Range of possible confounder prevalences tested

-P(C=1) = .01, .2, .4, .8

How much does the confounder interact with the exposure and the mediator?

- No synergy
- Perfect additivity
- Perfect multiplicativity
- Complete synergy

Outputs: Observed Effects • Main Effect = Y1 – Y0

• Proportion Explained = Indirect Effect/Main Effect

Outputs: True Indirect Effects

- For each possible confounding scenario...
 - Confounder Prevalence
 - Interaction Model
 - Confounder-mediator risk ratio
 - Confounder-disease risk ratio

... determine true indirect effect consistent with observed results

• Which confounding scenarios would change our interpretation of observed results?

Example 1: CHD (Freedman et al. 1992)

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

CHD Example: Observed Risks and Effects

Observed Risks

Х	MO	M1	Y00	Y01	Y10	Y11
.5	.193	.392	.064	.090	.074	.109

• Observed Effects

Main Effect	Indirect Effect (PIE)	Proportion Explained
.0187	.0053	28%

CHD Example: True Indirect Effects

Ouestion: Could confounding plausibly explain the observed indirect effect? Answer: Yes

Question: How strong would such a confounder have to be?

Answer: It depends on...

- Confounder Prevalence
- Interaction Model

Confounder Prevalence

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

Example 2: Vision Loss (Buyse & Mohlenbergs 1998)

Interferon- α \longrightarrow Vision Loss @ 12 mo.

Mediation Analysis

Interferon- α (X) \rightarrow Vision Loss @ \rightarrow Vision Loss @ 12 mo. (Y)

Vision Loss Example: Observed Risks and Effects

Observed Risks

Х	MO	M1	Y00	Y01	Y10	Y11
.46	.369	.540	.139	.790	.225	.809

• Observed Effects

Main Effect	Indirect Effect (PIE)	Proportion Explained
.161	.111	69%

Vision Loss Example: True Indirect Effects

Ouestion: Could confounding plausibly explain the observed indirect effect?

Answer: Only under very limited conditions...

- Interaction model (No synergy, perfect additivity)
- Confounder prevalence (C=.4)
- Strong risk ratios (>10)

Comparison: CHD vs. Vision Loss (1)

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

Comparison: CHD vs. Vision Loss (2)

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu

Results: Summary

- CHD Example
 - Confounding is a plausible alternative explanation (e.g. G=.2, RR_{CM} =5, RR_{CY} =2.5)
 - Note: Main effect even more vulnerable to confounding (e.g. G=.2, RR_{cx}=2, RR_{cy}=2)
- Vision Loss Example

- Confounding is not a plausible alternative explanation (e.g. G=.4, RR_{CM} =20, RR_{CY} =12.3)

Conclusions

- Assessment of mediation is not hopeless
- Main effect more vulnerable to confounding than the indirect effect
- Confounding represents a viable alternative explanation in some situations, but not others
- Investigators should consider the role that confounding might play in their assessment of mediation

Acknowledgements

Sharon Schwartz

Ezra Susser

Medical Scientist Training Program

Copyright 2007, Danella M. Hafeman, dmh2002@columbia.edu