Measuring impacts without footprints:

An evaluation of Ghana's African Youth Alliance Project

Michael McQuestion, PhD¹ Ali Karim, PhD² Clement Ahiadeke, PhD³ Jessica Posner, MPH² Timothy Williams, MA, MEM²

¹ Consultant, John Snow, Inc. and corresponding author: mike.mcquestion@gmail.com ² John Snow, Inc.

³ Institute for Statistical, Social and Economic Research, University of Ghana/Legon

How to evaluate impact when....

- Implementation of the intervention was through existing "branded" interventions
- There are multiple causal pathways
- A non-random sub-population was targeted
- Previous interventions may have already affected the desired outcomes
- The outcomes are culturally sensitive: adolescent sexual and reproductive behaviors
- Intervention exposures were as short as 12m
- Baseline sample not comparable to endline intervention or control group samples

African Youth Alliance/Ghana

- A comprehensive adolescent sexual and reproductive health (ASRH) intervention
- 2000-2005
- US\$ 14m (Bill and Melinda Gates Foundation)
- Executing agencies:
 - UNFPA
 - Pathfinder
 - PATH
- Twelve Implementing Partners (IPs)
 - Government agencies
 - Non-government organizations
- 20/110 districts with unmet ASRH needs targeted

Original evaluation strategies (JSI 2007)

- Identify a subset of localities where all six AYA components were delivered
- Add a comparison group of localities matched on macro characteristics
- Collect self-reported data on a random sample of young adults
- Develop detailed exposure measures for both AYA and background ASRH interventions
- Estimate AYA treatment effects, controlling for background ASRH exposure

Exposure measures

- <u>AYA-specific items</u>
 - Schools
 - "Life planning skills" course
 - Peer educators
 - IPs identified by name
 - Youth-friendly clinics
 - IPs identified by name
 - Mass media
 - radio "*Curious minds*"
 - tv: "Children's channel"
 - Print
 - "Junior graphic"
 - Enter-education
 - *"Challenger Cup"* soccer meets

- Other ASRH items
 - Schools
 - any in-class ASRH exposure
 - Peer educators
 - any exposure
 - Clinics
 - any visits
 - Mass media
 - any radio, tv spots, billboard exposures
 - Print
 - any exposure
 - Enter-education
 - any poetry reading, concert, dance, drama troupe, sporting event exposures

Exposure measures

- Each exposure dimension weighted by content recall
 - Content areas: Pregnancy, condoms, STDs, HIV/AIDS, abstinence, being faithful, VCT
 - Coded 1 if 4-7 content areas recalled, 0 otherwise
- Both exposure indexes categorized
 - AYA
 - 0 dimensions -> unexposed (n=1624)
 - 1-2 dimensions -> some exposure (drop n=815)
 - 3-6 dimensions -> exposed (n=960)
 - Other ASRH
 - 0-4 dimensions -> unexposed (n=1460)
 - 5-6 dimensions -> exposed (n=1104)

Evaluation results (JSI 2007)

- Did exposure to AYA's comprehensive, integrated intervention result in improved ASRH behavioral outcomes among youth aged 17-22 in areas where AYA worked?
 - Yes, according to instrumental variable treatment effects models
 - Significant treatment effects attributable to AYA on all nine measured ASRH behaviors among females One counterintuitive negative effect among males
 - Full report available (JSI 2007)

Follow-up evaluation

Here we ask a second evaluation question:

- Did AYA "add value" to (reinforce) existing ASRH interventions?
- Or

"Given their observed exposures to other ASRH interventions, what would have happened had everyone been exposed to AYA?"

Follow-up evaluation

Evaluation strategies

- Use existing data randomly sampled within purposive sampling frame
- Use existing measures
- Model self-reported outcomes, AYA and other ASRH intervention exposures as simultaneous, endogenous choices
- Estimate value added using simulations

Recursive trivariate probit

$$Y_{ki} = 1 \text{ if } Y_{ki}^* - \beta_{k0} + \beta_{k1}X_i + \beta_{k2}AYA_{ki} + \beta_{k3}ASRH_{ki} - \eta_{1ki} > 0 \quad (1)$$

= 0 otherwise

$$\begin{array}{l} AYA_{ki} = 1 \text{ if } AYA^*_{ki} - \gamma_{k0} + \gamma_{k1}X_i + \gamma_{k2}Z_{AYAki} - \eta_{2ki} > 0 \\ = 0 \text{ otherwise.} \end{array} \tag{2}$$

$$\begin{aligned} \text{ASRH}_{ki} = 1 \text{ if } \text{ASRH}_{ki}^* - \delta_{k0} + \delta_{k1}X_i + \delta_{k2}Z_{\text{ASRHki}} - \eta_{3ki} > 0 \\ = 0 \text{ otherwise.} \end{aligned} \tag{3}$$

 $\operatorname{cov}(\eta_2, \eta_1) = \rho_{21} \operatorname{cov}(\eta_3, \eta_1) = \rho_{31} \operatorname{cov}(\eta_3, \eta_2) = \rho_{32}$

- Y^*_{ki} a latent dependent variable (ie, propensity to report behavior k)
- AYA*_{ki} and ASRH*_{ki} latent variables representing propensities to report AYA and other (non-AYA) ASRH program exposures
- X_i a vector of exogenous individual and household characteristics
- $\beta_{k0} \beta_{k2}$, $\gamma_{k0} \gamma_{k2}$, $\delta_{k0} \delta_{k2}$ parameters
- $\eta_{1i}, \eta_{2i}, \eta_{3i}$ normally distributed errors $Var[\eta_1] = Var[\eta_2] = Var[\eta_3] = 1$
- $\rho_{21}, \rho_{31}, \rho_{32}$ error covariance terms

Recursive trivariate probit

- Model estimation by simulation (Stata mvprobit)
- Post-estimation probabilities also simulated (Stata mvppred)
 - Joint, marginal probabilities for each outcome
- Run simulations, constraining AYA and other ASRH exposures to 0, then to 1, for everyone
 - Compute four conditional probabilities
 - Pr(Y|X,other ASRH)|AYA=0
 - Pr(Y|X,other ASRH)|AYA=1
 - Pr(Y|X,AYA)|other ASRH)=0
 - Pr(Y|X,AYA)|other ASRH)=1

Plot simulated probabilities by age

Control variables

- Respondents' age
- Household SES (asset index)
- Nativity
- Years since last attended school
- Religion
- Household head's educational attainment

Region

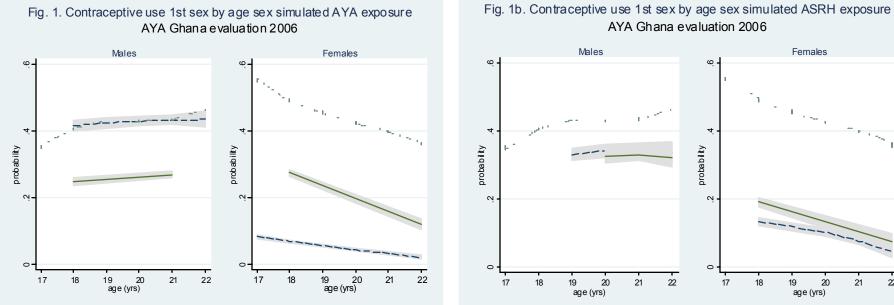
Model results: Endogeneity

- AYA, other ASRH exposures endogenous in all models
 - All exposure error covariances positive: the more likely respondent reported exposure to other ASRH the more likely s/he also reported exposure to AYA
 - Some ideas on why they are endogenous
 - Measurement errors
 - True program treatment effects confounded
 - Self-selection
 - Others?

Model results: Endogeneity

- All four female outcomes endogenous with AYA exposure
 - Error covariances in salutary direction
 - Possible latent variable explanation: females most likely to report AYA exposure had lower propensities to engage in risky sexual behaviors
- One female outcome (recent condom use) endogenous with other ASRH exposure
 - Error covariance positive
 - Possible explanation: females most likely to report other ASRH exposure had higher propensity to use condoms

Model results: Endogeneity


- One male outcome (abstinence) endogenous with AYA exposure
 - Error covariance negative: the more likely exposed to AYA the less likely was abstinent
 - Possible explanation: males most likely to report AYA exposure had higher propensities to be sexually active
- One male outcome (condom use) endogenous with other ASRH exposure
 - Error covariance positive
 - Males most likely to report other ASRH exposure had higher propensities to use condoms

Model results: treatment effects

	Contraceptive		Condom use w/		Two or more		Abstinence	
	use at first sex		current partner		partners <12m			
	males	females	males	females	males	females	males	females
AYA				+				-
				(p=.108)				(p=.04)
Other ASRH		+						
		(p=.109)						
Note: Only coefficients significant at p<.05 are shown.								

- Standard errors are larger so significant treatment effects are less likely in trivariate than in probit or bivariate probit treatment effects models
 - more fixed parameters
 - Iarger variance-covariance matrix

Model results: Simulations

dashed line: observed other ASRH no AYA solid: observed other ASRH all AYA dotted: sample mean

dashed line: observed AYA|no other ASRH solid: observed AYA|all other ASRH dotted: sample mean

22

AYA Ghana evaluation 2006

9

probability

N

17

18

19

20

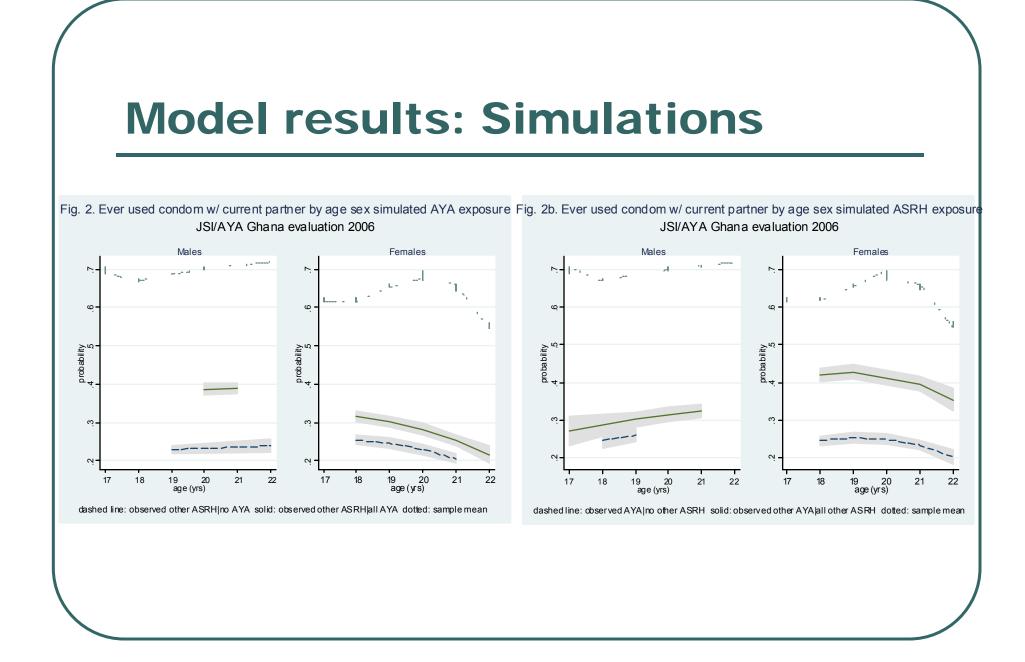
age (yrs)

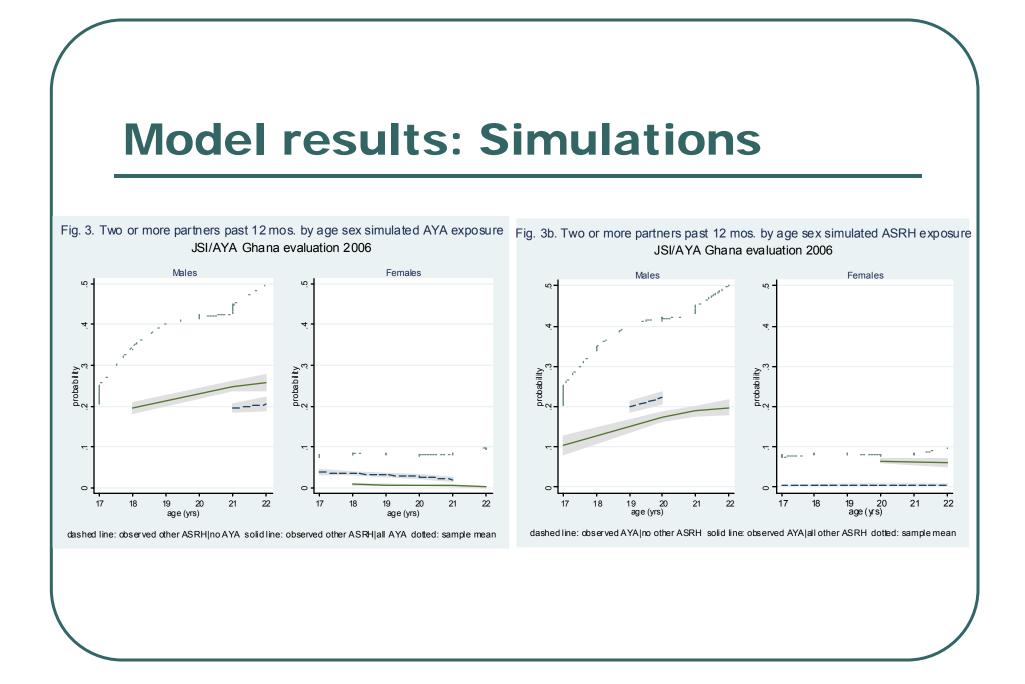
22

21

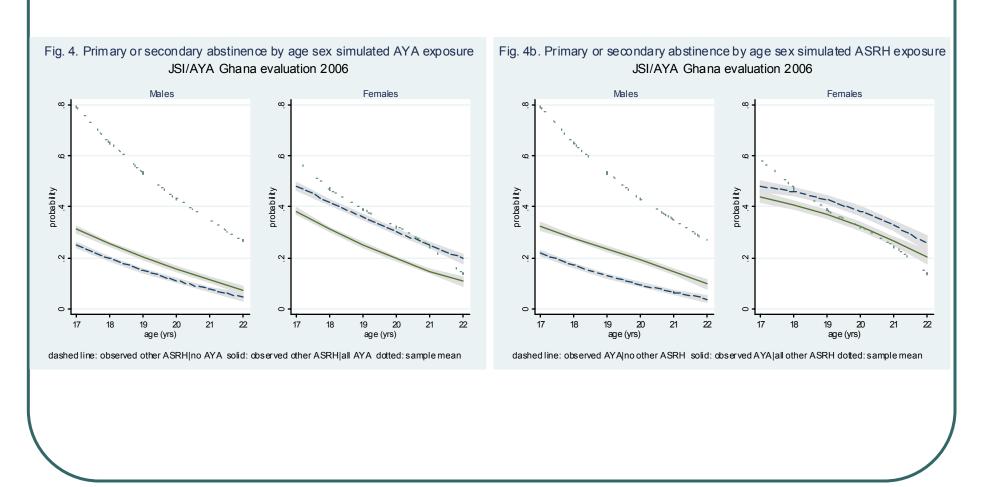
Females

Males


18


19

20


age (yrs)

21

Summary of simulation results

	Value add	ed by AYA	Value added by other ASRH				
	males	females	males	females			
Contraceptive use at first sex	-	+	0 *	+			
Condom use w/ current partner	+	+	+	+			
2+ partners past 12 months	-	+	+	-			
Abstinence	+	-	+	-			
* No common support on fractile polynomials.							

Summary and conclusions

- Contraception: Value would be added by both types of interventions
 - Full AYA exposure would increase:
 - contraceptive use at 1st sex, condom use among females
 - condom use among males
 - Full exposure to other ASRH interventions would increase:
 - contraceptive use at 1st sex, condom use among females
 - condom use among males
 - Neither type of intervention would add value for male contraceptive use at 1st sex
- Monogamy: Opposing effects
 - Full AYA exposure would:
 - increase monogamy among females
 - reduce monogamy among males
 - Full exposure to other ASRH interventions would:
 - reduce monogamy among females
 - increase monogamy among males
- Abstinence: Similar effects
 - Full exposure to either type of intervention would:
 - reduce female abstinence
 - increase male abstinence

Summary and conclusions

- Trivariate probits adequately fit the data
- Simulation results consistent with previously estimated AYA treatment effects for six of eight outcomes modeled here
- Exception: Abstinence
 - Probit treatment effects:
 - AYA increased female abstinence
 - AYA reduced male abstinence
 - Trivariate simulations:
 - full AYA exposure would reduce female abstinence
 - full AYA exposure would increase male abstinence
 - Possible reasons
 - disinhibition (females)
 - sample self-selection, other possible biases when other ASRH exposure is treated as a jointly endogenous choice

Summary and conclusions

- Simulations are a useful tool for probing treatment effects, particularly in cases where attribution is difficult, reporting bias is probable and true effects are weak or still emergent
- With their ability to simultaneously model multiple latent variables, multivariate probits reveal subtle effects not captured in probit or bivariate probit models