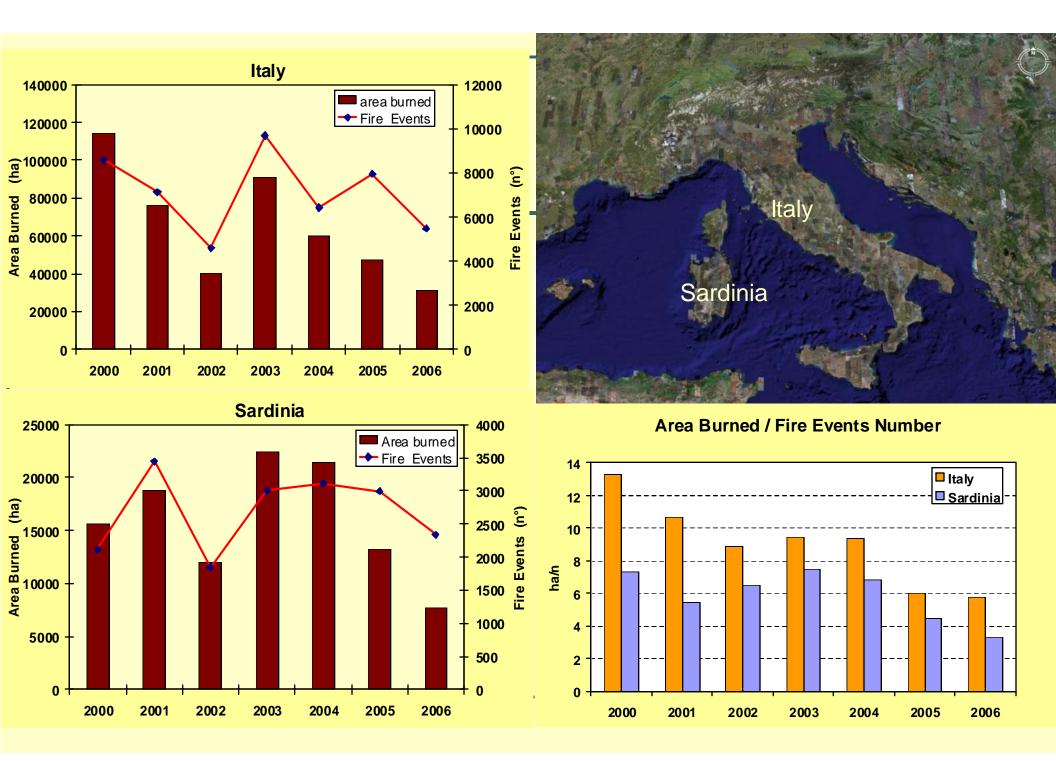


7th Symposium on Fire and Forest Meteorology 23-25 October 2007, Bar Harbor, Maine


Assessment of an integrated fire rating index for Sardinia, Italy

C. Sirca, <u>D. Spano</u> Università di Sassari, Sassari, ITALY

P. Duce
CNR-IBIMET, Sassari, ITALY

Ichnusa Fire Index

At the beginning of the nuragic age circa 1500 BC, Sardinia was called *Hyknusa* (latinized **Ichnusa**) by the Mycenaeans. The meaning is probably island (*nusa*) of the Hyksos - the people who had just been expelled by Ahmose I of Egypt circa 1540 BC.

Ichnusa Fire Index

(Spano et al., 2003; Sirca et al, 2006, Sirca et al., 2007)

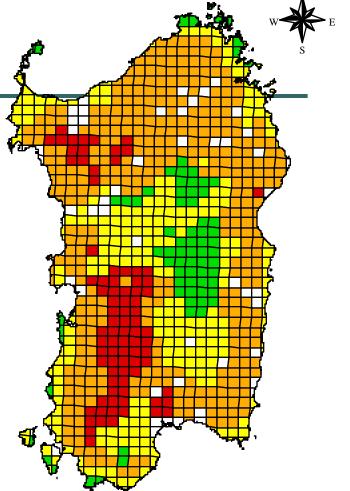
$$IFI = DC + MC + FC + TC$$

DC - Drought Code

describing water status of plants

MC - Meteorological Code related to the weather conditions

TC - Topological Code

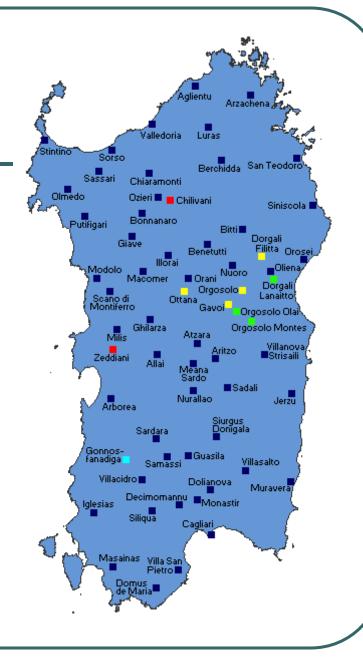

describing topography, slope, and exposure

FC - Fuel Code

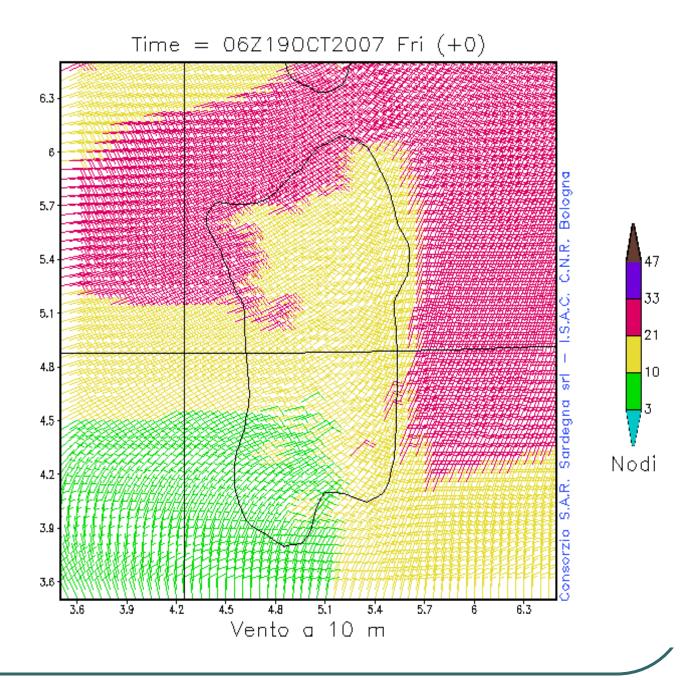
accounts for structure and moisture of fuel

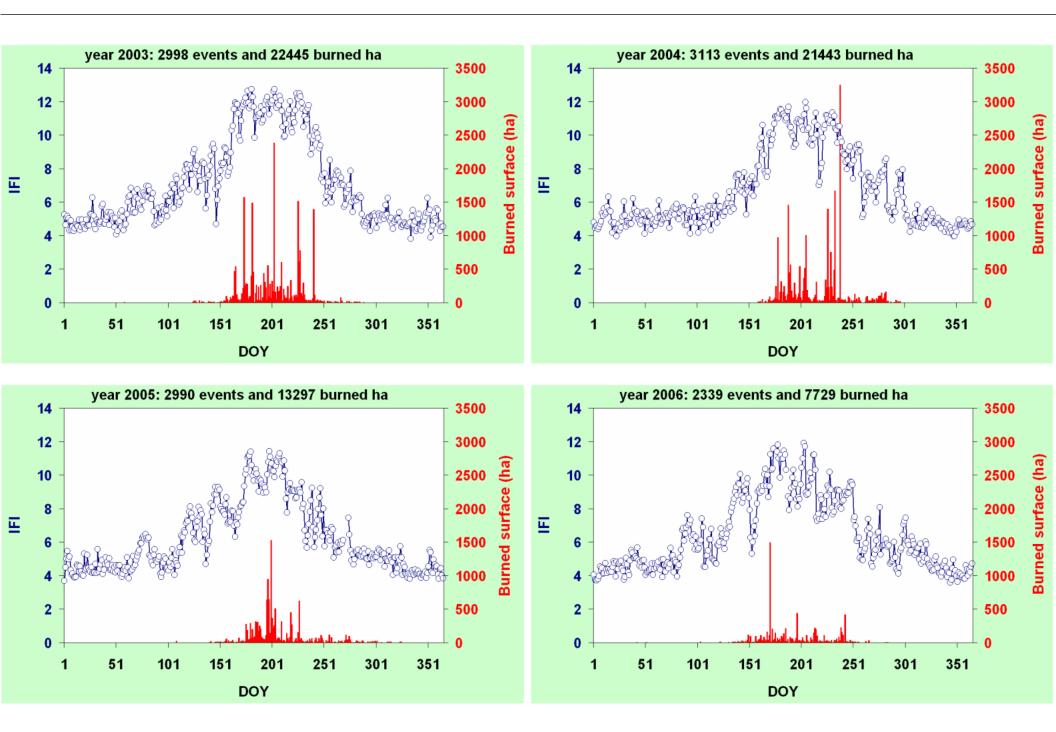
IFI values are normalized to danger classes 1 to 5

IFI Burn Sfc Danger Threshold Class Class (ha) Very low 5.5 $0 \leftrightarrow 10$ $5.5 \leftrightarrow 8.5$ Low Medium $10 \leftrightarrow 100$ $8.5 \leftrightarrow 10.0$ High $100 \leftrightarrow 500 \quad 10.0 \leftrightarrow 11.5$ Extreme >11.5 >500


Meteorological input data for Evaluation

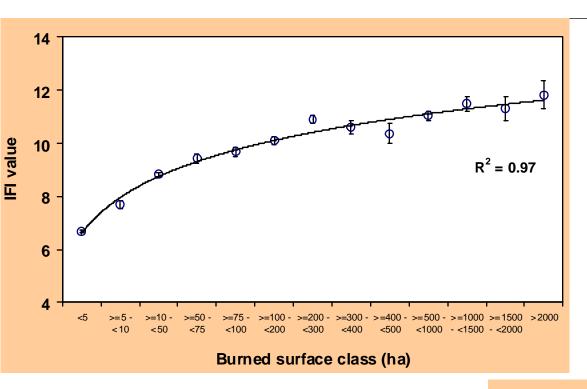
- > Measured
- > Forecast
- > By scenario




IFI performance

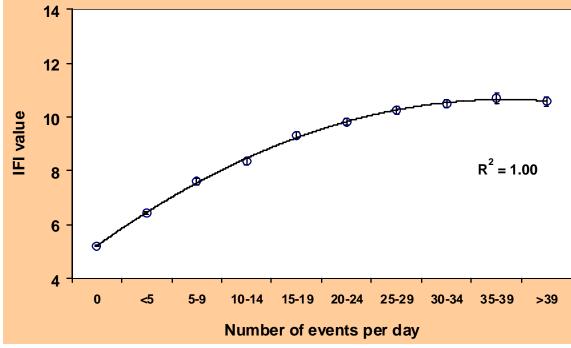
- Using weather data for years 2000 – 2006
- From 57stations of the Sardinia
 Agrometeorological
 Regional (SAR)
 network

- ➤ Using a weather forecast from a limited area model (BOLAM) with a 5 x 5 km grid resolution
- ➤ 2005 and 2006 summer periods
- > 3422 fire events 14962 ha burned

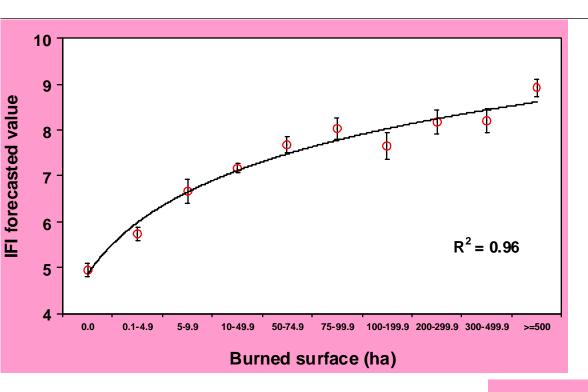


Copyright 2007, Diane Tsukamaki, dtsukamaki@collegeboard.org

days within each danger class

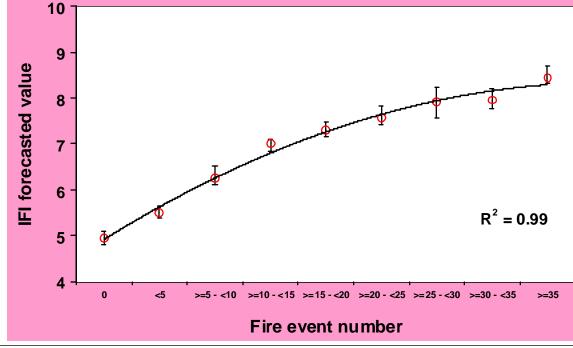

	2000	2001	2002	2003	2004	2005	2006
4	10	2	44	20	18	20	21
•	10	2	11	20	10	30	Z I
2	75	72	103	67	81	85	74
3	42	43	31	24	32	39	59
4	42	52	26	30	49	26	23
5	15	15	13	43	4	0	4

Period 2000-2006


Overall mean daily IFI value vs observed burned surfaces

Overall mean daily IFI value vs observed event number

Period: 2000-2006


Days	Annual 2549	APRIL-OCTOBER 1491	JULY-AUGUST 433
Underestimate (2 Classes)	1.5%	2.5%	2.8%
Underestimate (1 Class)	12.0%	17.6%	15.9%
Exact Prediction	59.7%	45.7%	43.4%
Overestimate (1 Class)	25.3%	31.7%	31.9%
Overestimate (2 Classes)	1.5%	2.5%	6.0%
Conservative Prediction	86.5%	79.9%	81.3%

2005 and 2006 summer periods

Overall mean daily IFI from weather forecast and observed burned surface

Overall mean daily IFI from weather forecast and event number

JULY- SEPTEMBER 2005 - 2006

Days	170
Underestimate (2 Classes)	0.0%
Underestimate (1 Class)	22.9%
Exact Prediction	56.5%
Overestimate (1 Class)	20.6%
Overestimate (2 Classes)	0.0%
Conservative Prediction	77.1%

IFI performance

- Y 2000-2004
- 57 areas corresponding to weather stations of Agrometeorological Sardinia Regional SAR service
- Comparison with the Canadian FWI, Portuguese Port, and Italian IMPI

Statistical test

- Mahalanobis distance (DM) test described by Lefebvre (1983)
- The "Score 1", "Score 2", and "Score 3" tests were described by Mandallaz and Ye (1996) and Bovio and Camia (1997)
- Fire events that occurred within 20 to 40 km around each station were included in the statistical analysis.

Mahalanobis distances for four indexes

MODEL	MD (20 km)	MD (40 km)		
IFI	1.23	1.16		
FWI	0.84	0.85		
IMPI	1.06	0.85		
PORT	0.44	0.46		

Values of Scores 1, 2 and 3 for four indexes

	20 km			40 km			
MODEL	Score 1	Score 2	Score 3	Score 1	Score 2	Score 3	
IFI	0.82	1.55	0.62	0.82	1.50	0.60	
FWI	0.78	1.48	0.53	0.80	1.46	0.59	
IMPI	0.80	1.52	0.57	0.79	1.44	0.53	
PORT	0.70	1.34	0.37	0.73	1.33	0.40	

Conclusions

- The number of fire events was positively correlated with the IFI calculations
- The area burned was highly correlated with daily IFI values
- The forecast data input and weather data input resulted in similar IFI performance
- The IFI performed better than other fire danger indexes under Sardinia conditions

THE END

Thanks

Ciao from Jena, Germany