A New Tool for Saving Women's Lives in Nigeria: The Potential of the Non-pneumatic Anti-Shock Garment

Turan JM, Ojengbede O, Butrick E, Bello OM, Awwal M, Galadanci H, Mohammed AI, Aina T, Akinwuntan A, Martin H, Miller S

Panel Discussion 3446 - Monday 5 November 2007, 8:30pm

Global Experiences with the Non-pneumatic Anti-Shock Garment: A New First Aid Device for Saving Mothers' Lives from Obstetric Hemorrhage

> American Public Health Association 135th Annual Meeting November 3-7, 2007 Washington, DC

This work was funded by the John D. and Catherine T. MacArthur Foundation

Maternal Mortality and Obstetric Hemorrhage in Nigeria

- Nigeria's MMR is 800/ 100,000 live births¹
- Obstetric hemorrhage causes at least 25% of those deaths
- Most deaths are attributable to some form of delay

Giobal Health

* WHO, UNICEF& UNFPA, 2004.

The NASG in Nigeria

- Piloted initially in 4 hospitals
- Expanded pilot studies to 6 hospitals in 2005
- Currently being pilot tested in 12 hospitals and 10 Primary Health Care Centers
- Around <u>400</u> Nigerian women with obstetric hemorrhage have been treated with the NASG to date

Preliminary Pre-Post Data from six Nigerian Hospitals (n=260)

- 2 hospitals in Northern Nigeria (Kano)
- 4 hospitals in Southern Nigeria (Ibadan & Lagos)
- Total of:
 - 99 pre cases
 - 161 NASG cases

Real Conditions at Hospitals in Low-Resource Settings

Overly busy

- Understaffed
- Under-equipped
- Facility closures
- LACK OF BLOOD FOR TRANSFUSIONS
- Women often arrive at the referral center in moribund conditions

Study Entry Criteria

Women suffering from severe obstetric hemorrhage with hypovolemic shock

Characteristics of Women with Obstetric Hemorrhage & Shock

	Pre-NASG (n=99)	NASG (n=161)	Statistical test result
Mean age +/- SD (N=259)	29.86 ± 6.50	29.86 ± 5.59	t-test, ns
Mean duration of pregnancy +/- SD (N=203)*	37.13 ± 3.39	37.05 ± 2.90	t-test, ns

* Excluding those with complications of abortion, ectopics, and molar pregnancies

Copyright 2007, Janet Turan, janet.turan@ucsf.edu

Condition at Study Entry

	Pre- NASG (n=99)	NASG (n=161)	Statistical test result
Median estimated blood loss in mL* (range) (N=232)	1000 (200-3000)	1600 (100-3000)	Median difference = -500, p < .05 (95% CI: -250 to -500)
Women with non palpable pulses, n (%) (N=260)	10 (10-1%)	60 (37.3%)	X ² = 22-99, p=-000

* Only for those with external blood loss at study admission

Standard protocols for the treatment of hemorrhage and shock

- Administration of crystalloid intravenous fluids
- Determine the source of bleeding
- If uterine atony
 - Use of uterotonic medications
 - Uterine massage
- Providing blood transfusions, vaginal procedures, and/or surgery as necessary

Treatment Received

	Pre-NASG (n=99)	NASG (n=161)	Statistical test result
Women receiving ≥1500 mL of IV fluids in 1st hour, n (%) (N=250)	59 (65-6%)	97 (60.6%)	Chi-square, ns
Women who received a blood transfusion , n (%) (N=250)	79 (87-8%)	145 (90-6%)	Chi-square, ns
Women with uterine atony who received uterotonics , n (%) (N=67)	26/26 (100-0%)	37/41 (90-2%)	Chi-square, ns
Women undergoing an operation (surgery), n (%) (N=257)	35 (35-7%)	51 (32-1%)	Chi-square, ns

Outcomes

	Pre-NASG (n=99)	NASG (n=161)	Statistical test result
Median blood loss measured in the drape (mL, range) (N=164)*	600 (0-2500)	230 (0-800)	Median difference = 400, p < .05 (95% CI: 250 – 520)
Mortality, n (%) (N=259)	7 (7-1%)	10 (6-2%)	RR = 0-870 (95% CI: 0-342 – 2-210) ns
Morbidity, n (%) (N=242 woman who survived)	3 (3-3%)	1 (0-7%)	Chi-square, ns

* 94 pre-NASG cases and 70 NASG cases

Conclusions I

- The findings of this pilot are similar to the findings of the previously published Egypt NASG pilot study.¹
- In both studies the median blood loss measured in the drape was significantly lower in the NASG group, 62% less in Nigeria and 50% less in Egypt.
- Proportions with MORBIDITY or MORTALITY were lower in the NASG group in both Egypt and Nigeria, but not statistically significant.

* Miller, SM et al., *BJOG;* 2006; 113(4):424-9.

Conclusions II

NASG significantly decreases blood loss.

NASG may decrease morbidity and improve survival among women suffering severe hypovolemic shock secondary to obstetric hemorrhage in low-resource settings such as Nigeria.

We are still collecting and analyzing data in Nigeria (expected N=585), with results to be presented soon.

Acknowledgements

Our Partners:

Participating Hospitals: Ayinke House Maternity Hospital, Lagos University College Hospital, Ibadan Aminu Kano Teaching Hospital, Kano •Murtala Mohammed **Specialist Hospital, Kano** Adeoyo Maternity Hospital, Oyo State Lagos Island Maternity Hospital

Other Significant Contributors: •Dr. Paul Hensleigh •Kemi Role