Measuring Asthma Indicators at New York City Public Schools

J. Richmond-Bryant¹, C.J. Saganich^{1,2}, R. Kalin³, L. Bukiewicz³, M.L. Valentine³, A. Burgie¹, A. Sanders³, L. Krahling³

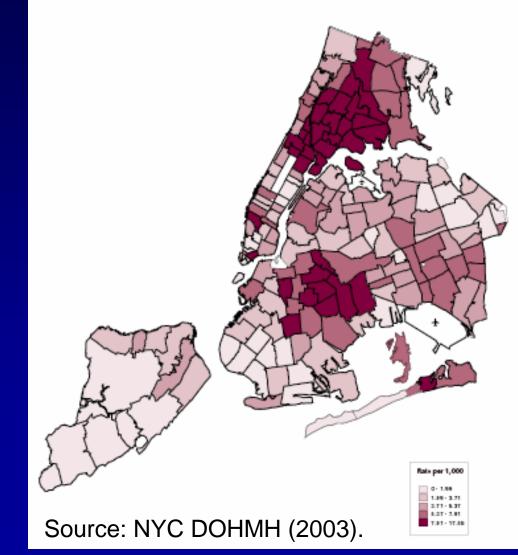
 ¹Urban Public Health Program, Hunter College, 425 East 25th Street, New York, NY 10010
²Weill Medical College of Cornell University, New York Presbyterian Hospital, 1509 York Avenue, New York, NY 10032
³Asthma Free School Zone, 273 Bowery St., New York, NY 10002

The Asthma Free School Zone Study: Objectives

- Characterize the traffic and air pollution in the vicinity of New York City schools during dismissals
- Evaluate the effectiveness of the Asthma Free School Zone program for reducing traffic-based air pollution around schools

Approach

- Monitor traffic and air quality at three school sites New York City boroughs
 Three one-month tests per year
- For each school site, associate traffic and concentration of air pollution
 - Use minute-by-minute concentration and traffic count data to assess the immediate impact of traffic on air quality
 - Also log behavior of idlers to understand why idling takes place and how to address it


Approach

- Repeat monitoring of traffic and air quality at same schools during year 2
 - In the 11 months between sampling at each school site, AFSZ administers their program:
 - Removing sources of asthma in school
 - Reducing vehicular idling
- Compare relationship between traffic and air quality for each year
 - Have total concentrations reduced?
 - Has the contribution of idling and other traffic sources decreased?

Site Criteria

- Distribute study over boroughs
 - Building type and density varies across boroughs
- Find areas with highest asthma hospitalization rates
 - East Harlem (Manhattan)
 - Bedford-Stuyvesant and Bushwick areas (Brooklyn)
 - Bronx (most areas)

Asthma Hospitalization Rates by ZIP Code Area, Children Aged 0-14, Hew York City, 2000

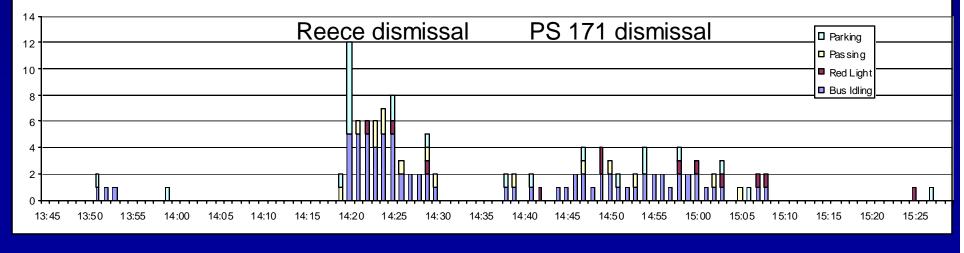
East Harlem School Cluster

- Cluster of four schools
 - Reece (special ed.)
 - PS 171 (PK-6)
 - CPE II (9-12)
 - Harbor School (PK-12)
- Dense street canyon
 3-4 story buildings lining street
- Madison Ave. AADT = 84,550 (at 135th)
 From NYS DOT (2006)

East Harlem School Cluster

Methods: Air Quality Measurements

- Measure mass conc. of two quantities
 - Demonstrated in epi. studies to cause and trigger asthma
- PM_{2.5}: TSI SidePak (Shoreview, MN)
- Black carbon (BC): Magee Scientific aethalometer (Berkeley, CA)
- Sampled for 1 hr. 45 minutes at 1-minute intervals



Methods: Traffic Observations

• Each minute, count passing data:

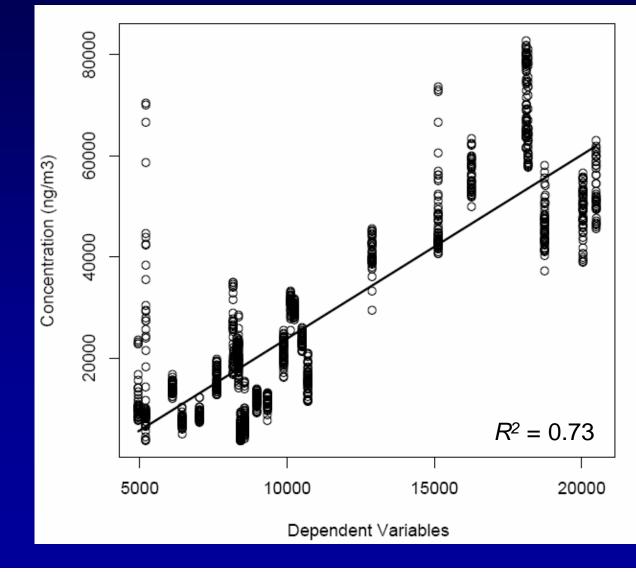
- Break down by bus, truck, or car
- Break down by red light, green light, parking
- Record start and stop time of idling traffic
 - Break down by bus, truck, or car
- Construct a time series of idling and passing traffic from data, e.g.:

Copyright 2007, Jennifer Richmond-Bryant, jrichmon@hunter.cuny.edu

Test Variables

- Concentration of PM_{2.5} in street (C_{PM2.5})
- Concentration of black carbon in street (C_{BC})
- Bus and truck idling (Idle_{BT})
- Bus and truck passing (Pass_{BT})
- Car idling (Idle_{Car})
- Car passing (Pass_{Car})
- Background PM_{2.5} (Bckg_{PM2.5})*
- Temperature (Temp)*
- Wind speed (WS)*
- Wind direction (WD)*
- Relative humidity (RH)*
- Barometric pressure (BP)*
- *From NYS DEC, averaged over all NYC sites.

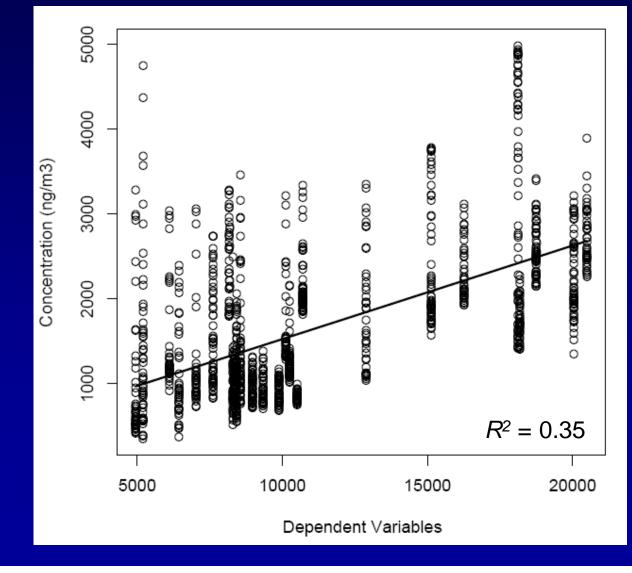
Methods: Statistical Analysis


- Took 5-minute moving average over time series to smooth data
 - $C_{PM^{2.5}}, C_{BC}, Idle_{BT}, Pass_{BT}, Idle_{Car}, Pass_{Car}$
- First pass: Applied generalized linear model to C_{PM2.5} and C_{BC} as a function of all independent variables:

$$C = \beta_0 + \sum_i \beta_i X_i$$

 Second iteration: removed independent variables with non-significant regression coefficients and re-fit significant variables

Results: PM_{2.5} Concentration


 $C_{PM^{2.5}} = 951,500 + 1,561*Idle_{BT} + 803.3*Pass_{Car} + 3.528*Bckg_{PM^{2.5}} - 558.6*Temp - 1,576*WS - 116.4*WD - 195.7*RH - 29,530*BP$

Copyright 2007, Jennifer Richmond-Bryant, jrichmon@hunter.cuny.edu

Results: BC Concentration

 $C_{BC} = 40,180 + 149.2*Idle_{BT} + 85.87*Pass_{BT} + 29.58*Idle_{Car} + 0.1223*Bckg_{PM2.5} - 14.88*Temp - 86.62*WS - 1,292*BP$

Copyright 2007, Jennifer Richmond-Bryant, jrichmon@hunter.cuny.edu

Findings

- Significant traffic and meteorological variables produced good correlation:
 - -85% of $PM_{2.5}$ concentration
 - 59% of BC concentration
- Idling of diesel vehicles accounted for:
 - -67% of traffic-generated $PM_{2.5}$
 - 56% of traffic-generated BC
 - And, all vehicle idling accounted for 68% of trafficgenerated BC
- On 13/15 sampling periods, street-level PM_{2.5} concentration significantly higher than DEC background

Implications

- Documentation that idling and passing traffic are associated with elevated concentrations
 - Data-driven decisions can be made on how to improve the school environment
- Evidence that automobile passing is a significant contributor to concentrations suggests need for traffic mitigation

Implications

- AFSZ and other advocates can use information to work towards zero tolerance for all idling in school zones
 - Enforce new NYS and NYC laws
 - Detailed information is used directly to inform outreach and training efforts