Cost Effectiveness of Rabies Post Exposure Prophylaxis (PEP)

Dhankhar P, Vaidya SA, Fishbien DB, Meltzer MI

Model

Cost effectiveness: net cost (in dollars) per life saved

\$\ \text{life saved PEP} = \frac{\text{PEP} - (\text{Probability death X \text{ value Life})}}{\text{Probability death if no PEP} - (0)

Model

Three cost effectiveness ratios

- ➤ Average Cost Effectiveness
 - average cost & median probability
- Least Cost Effectiveness
 - maximum cost & minimum probability
- Most Cost Effectiveness
 - minimum cost & maximum probability

Assumptions

Clinical cases of human rabies have only one outcome (death)

➤ PEP for rabies, when given as per recommendations, is essentially 100% effective in preventing a clinical case of rabies

Assumptions

- Perspective: Societal
- ➤ Time Line: One year
- Discounting: No discounting
 - Exception : Value of life lost (see later)
- > All costs adjusted to 2004 \$

Inputs: Cost of biologics

Parameter	Average	Min	Max
Vaccine	\$311	\$113	\$679
Number of doses	5	5	5
HRIG (6.3 ml dose)	<u>\$761</u>	<u>\$326</u>	<u>\$1,434</u>
Total \$ biologics	<u>\$2,315</u>	<u>\$889</u>	\$4,831

Source: Kreindel, et al Public Health Reports, 1998, 113. 247-251 Adjusted to 2004 \$

Inputs: Hospital and physician charges

Parameter	Average	Min	Max
Emergency room 1st visit	\$122	\$97	\$156
Emergency room return visit	\$100	\$48	\$156
# return emergency room visits	4	4	4
Physician's charge	\$105	\$59	\$125
Physician's follow up	\$100	\$59	\$129
# physician follow up visits	4_	4_	_4_

Total hospital costs <u>\$1,027</u> <u>\$584</u> <u>\$1,423</u>

Source: Kreindel, et al Public Health Reports, 1998, 113. 247-251 Adjusted to 2004 \$

Inputs: Other Costs

Parameter	Average	<u>Min</u>	<u>Max</u>
Patient Indirect Costs	\$700	\$161	\$2,161

Source: Shwiff et al: Journal of Wildlife Diseases (in press). Adjusted to 2004 \$

Inputs: Dollar Value of life

- Average present value of expected future lifetime earnings and housekeeping services, discounted at 3% and assuming an average life span of 75 years
- Value of Human Life (in 2004 \$) = \$1,109,920

Source: S.D. Grosse. Appendix I: In Haddix et al., Prevention Effectiveness. 2003. Adjusted to 2004 \$

Inputs: Probability of Rabies Transmission

- Lack of data
 - Except when have animal tested positive
- Delphi Technique (expert panel)
 - Scenarios of possible exposure
- Result: Wide range of probabilities

Inputs: Probabilities of Rabies Transmission

Type of exposure*	Median	Range
Skunk bite	0.05	0.1 - 0.01
Possible Bat Bite Exposure	0.001	0.01000001
Unknown Dog (bite)	0.00001	0.001 - 0.00001
Unknown Dog	0.000001	0.00001 - 0.000001
(lick scabbed wound)		
Unknown Cat (bite)	0.001	0.01 - 0.00001
Unknown Cat	0.000001	0.0001 - 0.000001
(lick scabbed wound)		
Exposure to Rabid Human†	0.000001	0.00001 -0.000001

^{*}Animals not available for testing

Source: Expert panel: In Vaidya et al. Forthcoming

[†] No recognized bite/saliva exposure

Model

Cost effectiveness: net cost (in dollars) per life saved

\$\ \text{life saved PEP} = \frac{\text{PEP} - (\text{Probability death X \text{ value Life})}}{\text{Probability death if no PEP} - (0)

RESULTS "Costs"

Rabies Transmission Scenario	First (Baselin	<u>e) Cost Scenario</u>
Animal tests positive	Cost Saving	
Skunk bite*	Cost Saving	
Possible Bat Bite Exposure*	\$2.9 million	(Cost Saving - \$8.4 billion)
Dog (bite)*	\$403 million	(\$524,080 - \$840 million)
Dog (lick)*	\$4 billion	(\$162 million - \$8.4 billion)
Cat (bite)*	\$2.9 million	(Cost Saving - \$840 million)
Cat (lick)*	\$4 billion	(\$15 million - \$8.4 billion)
Exposure to Rabid Human†	\$4 billion	(\$162 million - \$8.4 billion)

^{*}Animals not available for testing † No recognized bite/saliva exposure

Sensitivity Analysis

Two additional cost scenarios:

- Doubled all PEP-associated costs, and kept the value of human life at baseline
- Doubled the value of human life whilst keeping the cost of PEP unchanged

Sensitivity Analyses: Other cost scenarios

Exposure scenario	2 nd Cost Scenario	3rd Cost Scenario
Animal tests positive	Cost Saving - \$573,080	Cost Saving
Possible Bat Bite Exposure*	\$6.9 million (Cost Saving - \$17 billion)	\$1.8 million (Cost Saving - \$8.4 billion)
Dog (bite)*	\$807 million (\$2.2 million - \$1.7 billion)	\$401 million (Cost Saving - \$839 million)
Dog (lick)*	\$8 billion (\$326 million - \$17 billion)	\$4 billion (\$161 million - \$8.4 billion)
Exposure to Rabid Human†	\$8 billion (\$326 million - \$17 billion)	\$4 billion (\$161 million - \$8.4 billion)

^{*}Animals not available for testing

[†] No recognized bite/saliva exposure

Conclusions

- Cost saving if patient is bitten by a rabid animal that has tested positive for rabies
- Cost saving if it is a bite from a reservoir/vector species (e.g. skunk bite)
- On average, no cost saving for all other scenarios of rabies transmission
- Very wide range of cost effectiveness for most of the scenarios

Limitations

Dollar Value of Human Life

- Wide Range of Probabilities
 - ➤ Most important input

Some scenarios of rabies transmission might have been missed

