A Geographic Tool To Predict Community Deprivation In Health Care Access: Based On A Model Of Combined Personal And Ecologic Characteristics

> Martey S. Dodoo PhD, Xingyou Y. Zhang PhD, Robert L. Phillips, Jr. MD MSPH, Andrew Bazemore MD MPH

The Robert Graham Center

Policy Studies in Family Medicine and Primary Care

Presented at the: APHA 135th Annual Meeting

Session 4241.0: Tue, Nov 06, 2007: 3:30 PM Washington, DC

Outline

- Background and context
 - Previous work
 - Rationale for modeling
- Data
- Method: five-phased analysis plan
- Findings to date
 - Individual person-level; census-level; multi-level models
- Limitations and Next steps:
 - Modeling and mapping
 - Incorporation in mapping tool

Background

- Growth in persons at risk of poor access to health care services
- To explain barriers or delays in accessing health care, many used either:
 - **1.** Personal characteristics
 - 2. Ecological measures as near-proxy for access problems
- We combined 2 methods → multi-level model (2-levels) to derive health access deprivation index (HADI)

Five-phased Analytical Method:

- (Earlier:) (1) Selected key NHIS variables based on review of literature & exploratory analysis including checks for multicollinearity (prior work). Identified 2 dependent variables from NHIS
- (Earlier:) (2) Logistic modeling to explain individual-level health care services deprivation create individual Deprivation Index
- (3) Merged NHIS data with Census 2000 data at census-tract level (n=65,443), and 2006 ARF at RDC-NCHS.
 - Two-part modeling to explain census tract-level deprivation
- (4) Multi-level Hierarchical Linear Modeling (HLM) best predictors
- (5) OLS regression analysis to identify best predictors assess by comparing to HLM model create census tract level Deprivation Index.

Mapped resulting health deprivation index -

(Future): Map provider availability overlay etc.

Analytical Design and Method:

- (1) Estimated model using 2001-2003 NHIS data.
- (2) Evaluated model using 2004-2006 NHIS data.

Exploratory analysis included:

- a) check for multicollinearity (variance inflation factor),
- b) identification of two dependent/outcome variables;
- c) Identification of explanatory variables after extensive lit. review
- (3) Logistic regression used goodness-of-fit tests for complex survey samples, by Archer and Lemeshow, (2006) using Stata
- (4) To maximize cell sizes Combined merged 2001-2005 NHIS data with 2000 Census data
- (5) Tried various methods for index creation

Findings: Person-level

From 2001-2003 and 2004-2006 NHIS data files, most significant predictors of health access deprivation at individual level are adults:

- With no insurance
- With a functional limitation
- With fair or poor health (self-assessed)
- Not own home
- Living with no children in household
- Less than 65 years old

Health Access Deprivation Index – from individual-level modeling

The Robert Graham Center Policy Studies in Family Medicine and Primary Care

Findings: Census tract level

From 2000 Census data, most significant predictors of health access deprivation at ecologic level are census tracts with:

- Few retired persons (more 18 to 64 year olds)
- Are less densely populated
- Are in suburban areas
- Few variables stat. significant but wrong sign

Multi-level analysis estimation:

•	Level-1 of Model					
•	Probability (Y=1 B) = P (where Y = health access deprived)					
•	log[P/(1-P)] = B ₀ + B ₁ *(HLT_3) + B ₂ *(LIM_1) + B ₃ *(RAC_4) +					
•	B ₄ *(AGE_1) + B ₅ *(HIS_1) + B ₆ *(INS_4) +					
•	B ₇ *(OWN_2) + B ₈ *(SMO_2) + B ₉ *(PHO_2) + U _t					
•	Level-2 of Model					
•	$B_0 = G_{00} + U_0$					
•	$B_1 = G_{10} + U_1$					
•	$B_2 = G_{20} + G_{21}^* (\% 65 plus) + U_2$					
•	$B_3 = G_{30} + U_3$					
•	$B_4 = G_{40} + G_{41}^* (\% 65 plus) + U_4$					
•	$B_5 = G_{50} + G_{51}^*$ (% Hispanic)+ U_5					
•	$B_6 = G_{60} + G_{63}^*(MUA) + U_6$					
•	B ₇ = G ₇₀ + G ₇₁ *(Miles CHC) + G ₇₂ *(%Own Home)+ U ₇					
•	B ₈ = G ₈₀ + G ₈₁ *(% Disabled) + U ₈					
•	B ₉ = G ₉₀ + G ₉₁ *(%No Phone) + U ₉					

The Robert Graham Center Policy Studies in Family Medicine and Primary Care

Market Income		βCoeff	SE of β	P-value	OR	Variance	
Multi-level	INTRCPT1, B0, INTRCPT2, G00	-2.057	0.015	0.000	0.130		
Regression Results:	Rent home, slope B1 INTRCPT2, G10	0.312	0.032	0.000	1.370	0.107	
2001 – 2005 NHIS &	% own home,G11	0.145	0.050	0.004	1.160		
2000 Census data	Miles to CHC, G12	0.002	0.001	0.030	1.000		
	MUA or not, G13	0.018	0.024	0.467	1.020		
	Fair/Poor Health slope B2, INTRCPT2, G20	0.433	0.312	0.165	1.540	0.078	
	% 65 plus,G21	-0.063	0.296	0.832	0.940		
	% Male,G22	0.216	0.609	0.723	1.240		
	Functional limit slope, B3 INTRCPT2, G30	0.606	0.199	0.003	1.830	0.269	
	% 65 plus,G31	-0.580	0.175	0.001	0.560		
	% Male,G32	0.297	0.386	0.442	1.350		
	Never smoked slope, B4, INTRCPT2, G40	-0.345	0.027	0.000	0.710	0.272	
	% Disabled,G41	0.868	0.129	0.000	2.380		
	No phone slope, B5 INTRCPT2, G50	1.570	0.491	0.002	4.810	0.295	
	% in Household w/ phone, G51	-1.195	0.509	0.019	0.300		
	Multiple race slope, B6 INTR CPT2, G60	0.388	0.061	0.000	1.470	0.684	
	% Hispanic, G61	0.236	0.274	0.390	1.270		
	Hispanic slope, B7 INTRCPT2, G70	0.070	0.030	0.020	1.070	0.304	
	% Hispanic, G71	0.127	0.066	0.054	1.140		
	Less than 65 slope, B8 INTRCPT2, G80	0.511	0.021	0.000	1.670	0.469	
	% 65 plus,G81	0.226	0.122	0.063	1.250		
	Medicaid/SCHIPP, B9INTRCPT2, G90	-0.069	0.049	0.162	0.930	0.458	
	Miles from CHC, G91	0.002	0.002	0.333	1.000		
	HPSA or not, G92	0.007	0.059	0.909	1.010		10
	MUA or not, G93	-0.167	0.061	0.006	0.850		

Health Access Deprivation Index - census tracts – scatter plot from final estimations

The Robert Graham Center Policy Studies in Family Medicine and Primary Care

Health Access Deprivation Index - all US census tracts

The Robert Graham Center Policy Studies in Family Medicine and Primary Care

Health Access Deprivation Index - local census tracts (NJ-NY)

The Robert Graham Center Policy Studies in Family Medicine and Primary Care

Thanks mdodoo@aafp.org

The Robert Graham Center Policy Studies in Family Medicine and Primary Care