Improving child survival in developing countries: The need for integrated and targeted approach to programming

> Collins O. Opiyo, Population Studies Center, University of Pennsylvania

Monika Sawhney, School of Public Health and Tropical Medicine, Tulane University

Outline

- Background
- Objective
- Theoretical perspectives
- Data
- Methods of analysis
- Results
- Recommendations
- Conclusion

Background: Why Care?

- Childhood mortality a key indicator of socioeconomic development
- Widening rift in early childhood mortality rates
- Recent trends worrying: increase in Sub-Saharan Africa (SSA); stagnation in Southern Asia
- Shift in the structure of relationships
- Substantial improvements required in SSA and Southern Asia

Objectives of study

• Explore factors associated with **early childhood** mortality risks

Recommend actions to improve child survival

Theoretical perspectives

- Factors associated with childhood mortality risk change with age
- Disaggregating by age captures changes in risk factors
- Neonatal mortality dominated by biological factors
- Post-neonatal mortality dominated by socio-economic factors

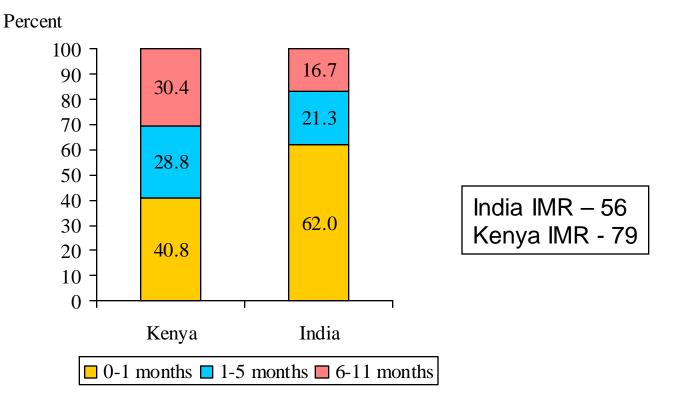
Data

- Kenya 1998 Demographic and Health Survey
- India 1998/99 Demographic and Health Survey
- Maternity history data for women aged 15-49
- Data available on access & utilization of MCH services, socio-economic characteristics & social amenities

Methods of analysis

- Bi-variate statistics → log rank tests for equality of survivor functions
- Multivariate models
 - Survival analysis \rightarrow Proportional hazard \rightarrow Cox regression
 - Model

 $\log h_{i}(t, X_{1i}, X_{2i}, X_{3i}) = a(t) + b_{1}X_{1i} + b_{2}X_{2i} + b_{3}X_{3i}$


 X_1 , X_2 , and X_3 are vectors of child, mother, and cluster variables respectively; b_1 , b_2 , and b_3 are corresponding vectors of coefficients.

Result 1

Factor / Variable	Impact on early childhood mortality (Relativ e risk - %)				
				Kenya	India
Contraceptive use:	Modern	VS.	None	-40	-38
Birth weight:	Low	VS.	Average	+80	+29
Maternal age at birth:	15-19	VS.	20-34	+122	+30
Breastfeeding duration:	1-5	VS.	6-11 months	+264	+132
Malnutrition:	% underweight (Kenya); % wasted (India)			+10	+5
Standard of living:	High	VS.	Low	-48	-
Fertility:	Birth order 2-4	VS.	5+	+86	-
Institutional delivery:	Private	VS.	Public hospital	-77	-
Medical treatment of illnesses:	High	VS.	Low	-44	
Maternal education:	Secondary+	VS.	None	-	-38
Religion:	Christian	VS.	Hindu	-	-32
Religion:	Moslem	VS.	Hindu		-19
Birth interval:	Average+	VS.	Short	-	-35
Vaccination coverage:	High	VS.	Low	-	-28
Tetanus injection:	1+	VS.	None	-	-30
Prenatal care provider:	None	VS.	Professional	-	13

Result 2

Risk of death highest among neonates

Age composition of infant mortality rate

Result 3

- Shift in the structure of relationships
 - Shift in relative importance from socio economic to biological factors
 - Health access factors remain important overall

Result 4 – Comparing mortality level in India & Kenya

Why Neonatal mortality is higher in India					
Variables	Prevalence (%)				
	India	Kenya			
Low birth weight	25	16			
Teenage mortality	20	17			
Tetanus toxoid injection	76	91			
Antenatal care	67	95			
Prenatal care provided by a health professional	67	88			
Delivery assistance provided by a health professional	36	41			
Institutional delivery	35	39			
Maternal malnutrition	35	11			

Why Post-neonatal mortality is higher in Kenya					
Variables	Prevalence (%)				
	Kenya	India			
Higher incidence of morbidity	51	44			
Lowermedical response to illnesses	60	74			
Lower matemal education (Secondary +)	24	33			
Lower standard of living (high status)	15	39			
Higher maternal participation in labor force	69	46			
Poor water (non-piped water)	74	63			
Poor sanitation (non-flush toilet)	94	80			

Recommendations

- Implement integrated program targeted to the needs and locations of children in different ages
 - Incorporate the variety of factors associated with overall child survival
 - **Target** age and sector specific factors

Components of the integrated program

Effective M&E framework

- Encourages information-driven programming and results-based management
- Encourages pooling of resources to streamline administration and improve targeting

Components of the integrated program cont'd...

- Programs and practices that enhance survival among neonates
 - Promote institutional delivery and skilled care
 - □ Train and equip TBAs
 - □ Improve access / adequacy of antenatal services
 - Promote modern contraception

Components of integrated program cont'd...

Effective implementation of child survival programs

- Re-invigorate the IMCI initiative
- Expand MCH services among vulnerable groups
- Better home care for sick children
- Direct targeting of children from poor families
- □ Improve socio-economic circumstances of the populace
- Increase public health spending

Conclusion

- Adequate focus on neonatal mortality
- Re-organization of existing programs
- Targeted and integrated approach to programming