Valley Fever Public Health Decision Support System Based on Climate and Environmental Changes

Andrew Comrie, Mary Glueck, Susan Skirvin, Scott Pianalto, Rebecca Johns, Patrick Stacy and Stephen Yool

University of Arizona

Dept. of Geography & Regional Development

comrie@arizona.edu

Copyright 2007, Andrew C. Comrie, comrie@arizona.edu

Cocci Background

- Valley fever (coccidioidomycosis) caused by soil-dwelling fungi, *Coccidioides immitis & Coccidioides posadasii*
 - Fungus responds to changes in climate conditions
- When fungal spores become airborne and are inhaled, infection may occur
 - Flu-like symptoms (fever, cough, etc.) in early stages
 - May disseminate from lungs to other parts of body
- Range of cases
 - Asymptomatic/Inapparent 60%
 - Mild to Moderate 30%
 - Complications 5% to 10%
 - Fatal less than 1%
- Greater regional mortality/morbidity than Hanta or West Nile viruses

Valley Fever Endemic Zone

Lifecycle of Coccidioides spp.

Coccidioides

Mycelial form of mature Coccidioides colony growing on blood agar culture medium

Photos: VFCE

Previous Cocci-Climate Research

- Initial cocci-climate links established in 1950s and 1960s
 - Many anecdotal relationships between climate and incidence identified, but only a few quantitative studies
 - e.g., Hugenholtz 1957, bivariate correlation of incidence to climate in Maricopa County; also Maddy 1965
- Early 1990s outbreak in California
 - Possible link to drought (Jinadu 1995)
- Most recently, work by my group and by CDC/ADHS
 - Kolivras et al. 2001, *Aerobiologia*, lit. review
 - Kolivras & Comrie 2003, Int. J. Biometeorol., multivariate models
 - Comrie 2005, Env. Health Persp., seasonal precip/dust models
 - Park et al. 2005, *J. Infect. Dis.*, multivariate model (a.k.a. Komatsu et al. 2003, *MMWR*)
 - Comrie & Glueck 2007, Annals NYAS, model sensitivity
 - UA work in progress/gray lit: Tabor, O'Rourke, Fisher/Bultman et al.

An Emerging Valley Fever Epidemic in Arizona

Source: AZ Dept of Health Services

Research Approach

- Improve understanding of relationships between climate variability and valley fever *incidence* in humans
 - No useful long-term data on actual spores in soil or air
 - Ongoing vaccine and mycology research
 - *Coccidioides* is a select agent (BSL3 required)
- Develop predictive models based on climate and geospatial analyses
 - Anticipate use of climate forecasts, satellite monitoring
- Interdisciplinary research and stakeholder group
 - Climatologists, geographers, MDs, epidemiologists, mycologists, microbial geneticists, soil scientists
 - Collaboration with Arizona Department of Health Services
- Develop a decision-support system with public health stakeholders
 - Enables preparedness, sensitive-group warnings, enhanced surveillance and targeted intervention

Soil Moisture Changes via Satellite

Potentially better than rain gauges? NDVI and soil moisture indices may show "integrated" signal

Satellite Soil Moisture vs. Cocci Incidence

- Preliminary results show selected strong bivariate relationships for some seasons
- Links to prior year conditions, others up to 4 years earlier

Land Cover Change Detection

Identify surface disturbance in space/time (e.g., construction)

Tucson

- May 7, 2003 to June 2, 2004 Change
- Landsat TM imagery
- White & Black show most changed locations

Dust Permits & Land Cover Change

- Tucson, 2003-2004
- Associate "change pixels" with dust inspections
- Inspection permit locations from Pima County DEQ
- Combined change/dust inspection image
 - Brown = dusty

NW Tucson

SE Tucson

Cocci Continues Upward Trend, But No Matching Trends in Precip and Dust

Strong Seasonal Patterns in Precip and Dust Co-Vary with Cocci

California Cocci Incidence Rises after Dry Season, But Poor Links to Annual Variability

Zender CS, Talamantes J (2006) Int J Biometeorol 50:174-182

Copyright 2007, Andrew C. Comrie, comrie@arizona.edu

Pima County Valley Fever Seasonal Detrended Model

Pima County Valley Fever Seasonal Model + Trend

Key Antecedent Precipitation Periods for the Detrended Model

 $\leftarrow \text{Year-4} \rightarrow \leftarrow \text{Year-3} \rightarrow \leftarrow \text{Year-2} \rightarrow \leftarrow \text{Year-1} \rightarrow \text{Cocci Season}$

- Within prior year, dry monsoon/winter or wet fall lead to higher cocci incidence for AS & OND cocci
- Other links sporadic, may be sensitive to small N
- Results are PRELIMINARY need cross-validation

Interim Conclusions & Future Work

- Satellite data may be useful in the next generation of seasonal models
 - May provide more spatial detail, improved predictors
- Climate effect on detrended cocci incidence promising; still supports "Grow & Blow" hypothesis
 - Climate models cannot account for the broad cocci trend
 - Precipitation a useful predictor, but roles of specific seasons not as clear
 - Dust does not emerge as a predictor in these Pima Co. results
 - All conclusions are preliminary
- Coming soon...
 - Finalize satellite measures over time/space, combine with climate models
 - Climate model runs to include Maricopa, Pinal and Pima counties
 - Potential climate change impacts based on climate model results
 - Work with ADHS, incl. public health decision-making implications

Contact email: comrie@arizona.edu