Association between children's blood lead levels, lead service lines, and use of chloramines for water disinfection in Washington DC, 1998-2006

Jaime Raymond, MPH Lead Poisoning Prevention Branch National Center for Environmental Health Centers for Disease Control and Prevention

Introduction

 DC Water and Sewer Authority (WASA) modified its drinking water disinfectant process in preparation of the Disinfection Byproducts Rule (EPA 2006a)

 In late 2000, DC WASA began using chloramine as a disinfectant for drinking water to reduce the byproducts in the drinking water

 New disinfectant process raised concerns of possible leaching of lead into the drinking water

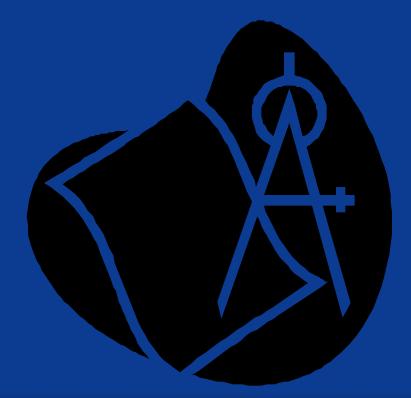
Background

- Chloramine strips the mineral scale from water services lines entering residences
- Lead Service Lines These lines connect the water main to the house

 EPA action level for lead in drinking water is 15ppb

Objective

Examine the association between childhood blood lead levels (BLL), exposure to lead service lines (LSL), and chloramine as a water disinfectant in Washington DC from 1998 - 2006


Hypotheses

- Is there an association between LSL and BLL among children < 6 years of age living in Washington DC?
- Is there an association between chloramine use and BLL among children < 6 years of age living in Washington DC?
- Is there a synergistic concomitant association between chloramine use and LSL and increasing BLL within this population?

Methods

Study Design

Cross-sectional study conducted to examine association between LSL, chloramine use, and BLL between 1998 and 2006 in Washington DC

Methods (2)

Study Population

- 49,084 unique children received a blood lead test between 1998 and 2006
- 26,141 dwellings had LSL during the same time period (Data from DC WASA)
- 6,670 children tested lived in a dwelling with a LSL (16,311 children tested lived in a dwelling without a LSL)
- 22,981 Final sample size

Methods (3)

Variables Examined

- *Primary Exposure variables*LSL
- Chloramine use (pre, during, post)

Primary Outcome variable ● BLL (\geq 5 µg/dL, \geq 10 µg/dL)

Covariates

- Gender
- Age at time of test
- Sample type
- Age of housing unit
- Year of BL test

Methods (4)

Analysis Plan

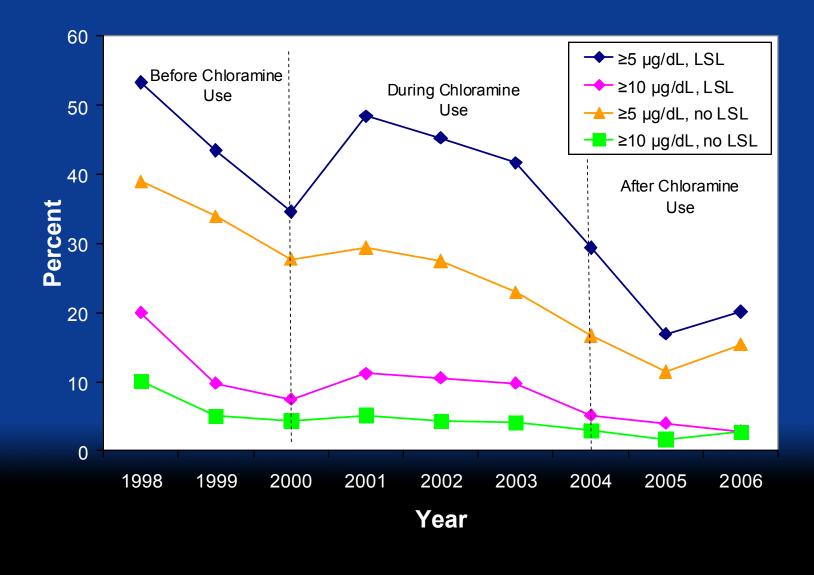
 Univariate analyses conducted to examine first order associations

 Generalized Linear Models developed to examine trends in BLL over time: pre, during, and post chloramine use

 Multiple logistic regression models developed to describe interaction and control for confounding

Univariate Analysis

	Blood Lead Levels						
	< 5 µg/dL		5 - 9 µg/dL		≥ 10 µg/dL		Chi-Square
Characteristic	n	%	n	%	n	%	p-Value
Gender							
Male	18,205	73.8	5,247	21.3	1,217	4.9	< 0.0001
Female	17,574	75.0	4,772	20.4	1,080	4.6	
Unknown	738	74.6	228	23.1	23	2.3	
Age							
0-11 months	6,216	75.0	1,685	20.3	385	4.6	<0.0001
12-23 months	7,003	74.4	1,928	20.5	476	5.1	
24-35 months	6,631	70.5	2,223	23.6	546	5.8	
36-47 months	5,498	72.5	1,720	22.7	364	4.8	
48-72 months	11,169	77.5	2,691	18.7	549	3.8	
Sample Type							
Capillary	1,492	72.4	515	25.0	55	2.7	<0.0001
Venous	29,535	74.5	7,986	20.1	2,134	5.4	
Unknown	5,490	74.5	1,746	23.7	131	1.8	


Univariate Analysis (2)

	Blood Lead Levels						
	< 5 µg/dL		5 - 9 µg/dL		≥ 10 µg/dL		Chi-Square
Characteristic	n	%	n	%	n	%	p-Value
Chloramine Use							
Pre-Chloramine	9,719	65.9	4,042	27.4	976	6.6	<0.0001
During Chloramine	17,147	74.1	4,916	21.2	1,086	4.7	
Post Chloramine	9,651	86.2	1,289	11.5	258	2.3	
Age of Housing							
Pre- 1950	12,484	68.0	4,588	25.0	1,300	7.1	<0.0001
1951-1978	1,469	83.0	258	14.6	43	2.4	
Post 1978	642	84.4	108	14.2	11	1.4	
Unknown	21,922	77.8	5,293	18.8	966	3.4	

Univariate Analysis (3)

	Blood Lead Levels						
_	< 5 µg/o	JL	5 - 9 µg	/dL	≥ 10 µg	/dL	Chi-Square
Characteristic	n	%	n	%	n	%	p-Value
Lead Service Line							
Yes	4,329	64.0	1,863	27.6	568	8.4	<0.0001
No	13,732	84.7	2,069	12.8	420	2.6	
Unknown	18,456	70.7	6,315	24.2	1,332	5.1	
Sample Year							
1998	1,984	58.9	998	29.6	386	11.5	<0.0001
1999	3,776	64.9	1,714	29.5	328	5.6	
2000	3,959	71.3	1,330	24.0	262	4.7	
2001	3,780	67.9	1,450	26.0	338	6.1	
2002	4,019	70.1	1,418	24.7	294	5.1	
2003	3,039	74.4	846	20.7	200	4.9	
2004	6,309	81.2	1,202	15.5	254	3.3	
2005	5,430	87.7	641	10.3	124	2.0	
2006	4,221	84.4	648	13.0	134	2.7	

Percentage of children with EBLL, by year and water-line type

Copyright 2007, Jaime Raymond, JRaymond@cdc.gov

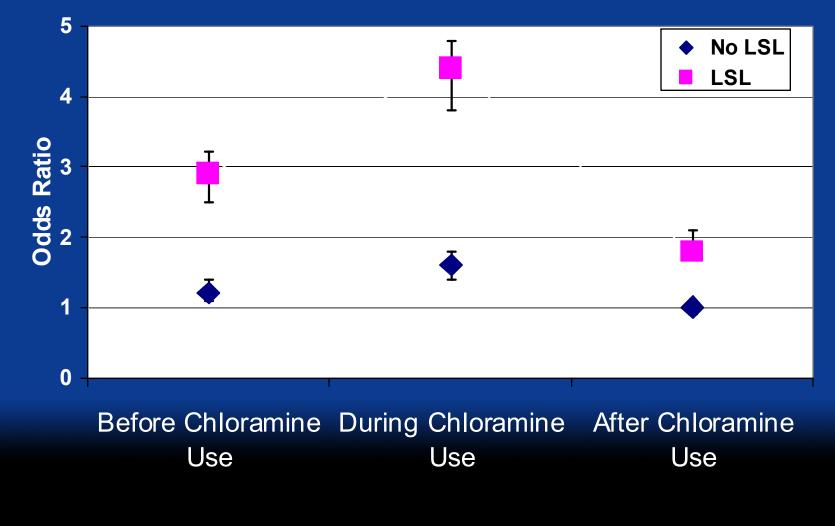
Associations of BLL between LSL and chloramine use

	During use of Chloramine (2001-2004)			Post Chloramine use (2005 - 2006)				
	LSL	No LSL	POR	95% CI	LSL	No LSL	POR	95% CI
≥ 5 µg/dL	1,343	1,250	3.0	(2.7, 3.3)	244	1,216	1.4	(1.2, 1.7)
< 5 µg/dL	2,062	5,698			1,122	8,003		
≥ 10 µg/dL	292	229	2.8	(2.3, 3.3)	50	184	1.9	(1.4, 2.6)
<10 µg/dL	3,113	6,719			1,316	9,035		

POR = Prevalence Odds Ratio

Copyright 2007, Jaime Raymond, JRaymond@cdc.gov

Adjusted multivariate model for BLLs ≥ 5 µg/dL among children < 6 years of age living in Washington DC


Variable	Adjusted Model					
	Parameter Estimates	OR	95% CI	P-value		
Age of Housing (referent = post 1978)						
Pre-1978		1.5	(1.3, 1.8)	<0.0001		
Pre-1950		2.3	(1.9, 2.8)	<0.0001		
Lead Service Line (LSL)		4.4^		<0.0001		
Chloramine Use	0.2225			<0.0001		
LSL*Chloramine Use	0.2178			<0.0001		

^ Represents the OR for a child living in a house with a LSL, when chloramine was used

Adjusted multivariate model for BLLs ≥ 10 µg/dL among children < 6 years of age living in Washington DC

Variable	Adjusted Model					
	OR	95% CI	P-value			
Sample Type (referent=capillary)	3.6	(1.9, 6.5)	<0.0001			
Age of Housing (referent = post 1978)						
Pre-1978	2.1	(1.4, 3.1)	0.0004			
Pre-1950	4.2	(3.7, 4.9)	0.0004			
Lead Service Line (LSL)	2.7	(2.2, 3.2)	<0.0001			
Chloramine Use	1.4	(1.3, 1.5)	<0.0001			

Graphic interpretation of interaction between LSL and chloramine use for BLLs ≥5 µg/dL

Copyright 2007, Jaime Raymond, JRaymond@cdc.gov

Discussion

- Age of Housing continued to be significantly associated with BLLs ≥5 µg/dL and ≥10 µg/dL even after controlling for confounders.
- Lead paint in older housing continues to be the main source of lead exposure in children < 6 years of age
 - Chipping and peeling paint
 - Lead paint dust

Discussion (2)

 LSL – Children who were tested and had BLL ≥5 µg/dL or ≥10 µg/dL were significantly more likely to have lived in a HU with a LSL compared to children with lower BLLs even after adjusting for confounders.

LSL are found across Washington DC

Possible that children with BLLs <5 µg/dL or <10 µg/dL
Lived in a HU that had a non-lead service line
Tended to drink bottled water

Discussion (3)

- Chloramine use The proportion of children tested with BLL ≥5 µg/dL or ≥10 µg/dL was significantly higher during the time that chloramine use was in effect compared to after use was discontinued.
- Chloramine may have stripped the lead from LSL resulting in subsequent leaching into the drinking water.

Discussion (4)

 There is a significant interaction between LSL exposure and chloramine use among children with BLLs ≥5 µg/dL

Concomitant use of chloramine and LSL resulted in a significant increase in the proportion of children with BLLs ≥5 µg/dL because of the leaching of lead from the LSL during the use of chloramine as the water disinfectant.

Conclusion

 The use of chloramine in the water system as a water disinfectant may have caused LSL to leach lead into the water, contributing to the rise of BLLs in young children.

 When chloramine was eliminated as the drinking water disinfectant, we saw a dramatic reduction in BLLs in children < 6 years old in Washington DC.

Conclusion (2)

 Lead paint in older housing (pre-1950, pre-1978) continues to be a significant source of lead exposure in children < 6 years of age living in Washington DC.

 There is no safe level of lead and all exposure to this environmental hazard should be avoided.

Co-Investigators

Chinaro Kennedy, DrPH, MPH (Team Leader, Epi and Surveillance Section, Lead Poisoning Prevention Branch, CDC)Mary Jean Brown, ScD, RN (Chief, Lead Poisoning Prevention Branch, CDC)

Copyright 2007, Jaime Raymond, JRaymond@cdc.gov