# ROCHESTER

#### "Unnatural" History:

#### Modeling Disease Progression Using Observational Data

Katia Noyes<sup>1</sup>, Alina Bajorska<sup>1</sup>, André Chappel<sup>1</sup>, Steven Schwid<sup>2</sup>, Lahar Mehta<sup>2,3</sup>, Bianca Weinstock-Guttman<sup>4</sup>, Robert G. Holloway<sup>2</sup>, Andrew W. Dick<sup>5</sup>

<sup>1</sup>University of Rochester, Dept. of Community and Preventive Medicine <sup>2</sup>University of Rochester, Dept. of Neurology, <sup>3</sup>Evergreen Neuroscience Institute, Kirkland, WA, <sup>4</sup>Jacobs Neurological Institute SUNY University at Buffalo, <sup>5</sup>Rand Corporation, Pittsburgh, PA

Funding: National Multiple Sclerosis Society, Contract HC 0071 National Center for Research Resources, 1 UL1 RR024160-01

# Background

- Randomized clinical trials (RCTs) do not provide disease progression rates representative of the general population
  - patient self-selection
  - treatment adherence
  - quality of care
- Treatment effects from observational data may be biased
  - non-randomization
  - patient self-selection

#### Study Objective:

• To develop disease progression profiles for treated and untreated individuals with multiple sclerosis using observational data and pivotal trial-based treatment effects

# Multiple Sclerosis (MS) is associated with disability and high expenses

- MS is a autoimmune neurodegenerative condition
- MS is the second most frequent cause of disability in early- to middle-aged adults, after trauma
- Annual direct and indirect costs of MS care can total over \$50,000 (2008 U.S.) per patient



# **Epidemiology of MS**

- Chronic demyelinating autoimmune disease of the CNS.
- Peak incidence around age 30.
- Females twice as likely as males to develop MS.
- Estimated US prevalence between 266,000-400,000.



#### Data

- 2000-2005 Sonya Slifka Longitudinal MS Survey
  - > Representative sample of MS population in the U.S.
  - Information on:
    - MS severity
    - types and extend of disability demographics
    - demogra
    - treatment
- 900 people with relapsing MS
  - Excluded participants:
    - · who completed only one interview
    - those with missing information on key information (e.g. disease duration, disease state or demographics)

## Measuring disability in MS patients: Crosswalk from EDSS to Disease States

| EDSS CATEGORY | DISABILITY STATUS SCALE                                        |  |  |
|---------------|----------------------------------------------------------------|--|--|
| EDSS 0-1.5    | 1: NO MS SYMPTOMS                                              |  |  |
| EDSS 2-2.5    | 2: MILD SYMP, NON-LIMITING                                     |  |  |
| EDSS 3-4      | 3: MILD SYMP, NOT AFFECTING WALKING                            |  |  |
| EDSS 4.5-5.5  | 4: PROBLEM W/WALKING, DON'T USE AID<br>4:25 FT W/O CANE OR AID |  |  |
| EDSS 6        | 5: 1-SIDE CANE OR AID FOR 25 FT                                |  |  |
| EDSS 6.5-7    | 6:2-SIDE CANE OR AID FOR 25 FT                                 |  |  |
| EDSS 7.5-8.5  | 7: ONLY WHEELCHAIR/SCOOTER                                     |  |  |
| EDSS 9-9.5    | 8: COMPLETELY BED RIDDEN                                       |  |  |

#### Model Structure

- Disability-based disease states (DSs)
- First-order Markov model with annual cycles for transitions between DSs
- Transition probabilities and relapses estimated with multinomial logit regressions
- Published DMT effects used to modify progressions for individuals on DMT
- 10-year disease progression paths

Transition probabilities in untreated cohort

#### Progression Estimation (steps)



- 1. Estimate P & effects of covariates: prior DS, disease duration, recent relapse rate, & demographics
- 2. Set  $T = R_{CT}$
- 3. Re-estimate P applying fixed covariates and T coefficients
- 4. Calculate R , check if  $R = R_{CT}$
- 5. If =, output P & T to MC simulation
  6. If ≠, use numerical algorithm to find T resulting in R = R<sub>CT</sub>
- 7. Re-estimate P
- 8. Continue iteratively until  $R = R_{CT}$

# Study Limitations

- "All models are wrong but some are useful..."
- Limited sample of patients with early & late disease
- Cohort representativeness: Slifka vs. NHIS
- Disability/EDSS as a measure of MS progression
- RCT data quality

# 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

| 2 | 0.644<br>(0.599, 0.688) | 0.303 (0.262, 0.344)    | 0.052                | 0                       | 0                       | (.)                     |
|---|-------------------------|-------------------------|----------------------|-------------------------|-------------------------|-------------------------|
| 3 | 0.183 (0.156, 0.219)    | 0.637<br>(0.598, 0.672) | 0.157                | 0.023 (0.012, 0.026)    | 0<br>(.)                | 0<br>(.)                |
| 4 | 0.027 (0.012, 0.052)    | 0.222<br>(0.174, 0.271) | 0.54 (0.472, 0.598)  | 0.195<br>(0.157, 0.250) | 0.016<br>(0.005, 0.041) | 0<br>(.)                |
| 5 | 0(.)                    | 0.055 (0.019, 0.103)    | 0.151 (0.100, 0.225) | 0.550 (0.460, 0.618)    | 8 195<br>(0.139, 8 267) | 0.049 (0.021, 0.090)    |
| 6 | 0                       | 0 (.)                   | 0.083 (0.024, 0.206) | 0.199 (0.115, 0.308)    | 0.536 (0.391, 0.662)    | 0.182                   |
| 7 | 0                       | 0                       | 0 (.)                | 0.012 (0.000, 0.041)    | 0.043 (0.009, 0.097)    | 0.946<br>(0.873, 0.982) |

### Conclusions

- Treated MS patients had faster disease progression than never untreated
- Patients who forgo treatment have milder, slower progressing forms of MS
- Advantages of correcting for treatment effects in a more representative group of patients:
  - more realistic estimate of natural history and disease progression
  - Improved precision of the estimates

# **THANK YOU!**

#### Katia\_Noyes@urmc.rochester.edu

http://www.urmc.rochester.edu/cpm/divisions/hsr/index.html

