Effects of Alcohol Prices and Taxes on Alcohol Consumption and Traffic Crash Rates: Meta-analyses of the Literature from 1960 – 2006

> Alexander C. Wagenaar, PhD Professor Kelli A. Komro, MPH, PhD Associate Professor

Department of Epidemiology & Health Policy Research and Institute for Child Health Policy University of Florida, College of Medicine

Presenter Disclosures Alexander C. Wagenaar Kelli A. Komro

The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

No Relationships to Disclose

Data Collection—Literature Search

- Comprehensive search of nine databases:
 - -AgEcon Search (1960-present)
 - -Blackwell-Synergy (1879-present)
 - -EBSCO Host (1922-present)
 - -JSTOR (1838-present)
 - -MEDLINE (1950-present)
 - -Springer (1922-present)
 - -ScienceDirect (1823-present)
 - -ISI Web of Knowledge (1900-present)
 - -Wiley (1960-present)

Data Collection—Literature Search

Search terms:

[(tax OR taxes OR taxation OR cost OR cost* OR price OR prices) AND (alcohol* OR drinking OR liquor OR drunk* OR beer OR wine OR spirits OR malt beverage*)]

- Entire record for each document included in search
- "Snowball" sampling used to locate additional studies

Data Collection—Literature Search

- Study findings must be conceptually comparable and in a similar statistical form.
- Two step coding process:
 - **1. Study characteristics were examined and coded**
 - 2. Estimates of effect coded and converted to uniform effect-size statistic

Population & Study Characteristics

- morbidity
- mortality

UF |UNIVERSITY of FLORIDA

Estimating Standardized Effect Size

 Estimate standardized effect size r for each separate estimate and the standard error

$$r = \sqrt{t^2/(t^2 + (N-2))}$$
 $SE_r = (1 - r^2) * SE_z$

Estimate associated Fisher's Z transformation for each

 $ES_z = .5log_e[(1+r)/(1-r)]$ $SE_z = 1/\sqrt{n-3}$

Creating Meta-estimate of Effect

- Identify sets of statistically independent and nonindependent estimates
 - Intra-study non-indep effect sizes were averaged
 - Inverse variance weight applied to each independent effect size:

$$w_i = \frac{1}{v_i}$$
 where $v_i = SE_i^2$

Creating Meta-estimate of Effect

- Evaluated effect size distribution for outliers and determined need for trimming or Windsorizing.
- Computed weighted mean effect size by:

$$\overline{ES} = \frac{\sum (w_i * ES_i)}{\sum w_i}$$

ES_i : values of the individual effect sizes

- w_i : inverse variance weight for each effect size I
- *i* : equal to 1 to *k*, with *k* being the number of effect estimates

Test for Homogeneity

• Based on the *Q* statistic:

$$Q = \Sigma w_i (ES_i - ES)^2$$

- ES_i : individual effect size for i = 1 to k
- \overline{ES} : weighted mean effect sizes over k effect sizes
- w_i : individual weight for effect for ES_i
- Distributed as a chi-square with df = k 1
- Statistically significant *Q* indicates a heterogeneous effect size distribution

Random Effects Model

- Observed significant study-level heterogeneity (Q=63, df=15, p<.001), therefore adopted a randomeffects model
- Variance becomes a function of study-level sampling error and random, between-studies variance

$$\boldsymbol{v}_i^* = \boldsymbol{v}_i + \boldsymbol{\mathcal{Z}}^2$$

$$\mathcal{Z}^2 = \mathbf{Q} - (k-1)/\Sigma w_i - (\Sigma w_i^2/w_i)$$

- *v_i* : subject level sampling error
- τ^2 : random variance component
- Q : value of homogeneity test
- k : number of effect sizes
- w_i: inverse variance weight for each effects size defined under fixed-effects model

Random Effects Model

- Inverse variance weight applied becomes $w_i^* = 1 / v_i^*$ and \overline{ES} is recomputed
- Standard error of *ES* computed as $SE_{\overline{ES}} = \sqrt{1 / \Sigma w_i^*}$
- 95% confidence interval constructed as

 $ES \pm Z_{(.95)}(SE_{\overline{ES}})$

• Significance of \overline{ES} obtained by $z = |ES| / SE_{\overline{ES}}$

Effects of Price on Alcohol Consumption: Individual-level Studies

Effects of Price on Alcohol Consumption: Aggregate-level Studies

UF FLORIDA

Effects of Price on Beer Consumption: Individual-level Studies

Effects of Price on Beer Consumption: Aggregate-level Studies

Effects of Price on Wine Consumption: Individual-level Studies

	-0.8	0.0	0.8
TOTAL	-0.14		
Wang, 1996	-0.64	-	
Rabow, 1982	0.01	+	
Heien, 1989	-0.02	-	
Grossman, 1987	-0.03	-	
Gao, 1995	-0.01	+	
Angulo, 2001	-0.02	-	

Effects of Price on Wine Consumption: Aggregate-level Studies

UF FLORIDA

Effects of Price on Spirits Consumption: Individual-level Studies

Effects of Price on Spirits Consumption: Aggregate-level Studies

Effects of Price on Heavy Alcohol Use (All Individual-level Studies)

Conclusions—Alcohol Consumption

- Evidence for inverse relationship between alcohol taxes/prices and drinking is *very* strong
- 10% increase in price reduces drinking by 5%
- Magnitude of observed effects is large
- Many more studies than on other prevention efforts
- Larger, more consistent effects than other prevention efforts
- Taxes/prices affect drinking by all groups:
 - Youth as well as adults
 - Heavy as well as moderate drinkers
- Large effects and universal coverage of such policies mean they are important for public health and social well-being

Study Details

Study	IV	Outcome	Long. N	Cross- sect'l N	Years
Saffer, 1989	Тах	Nighttime MV fatality	6	14	1970-1983
Adrian, 2001	Price	A-R driver MV fatality	19	1	1972-1990
Chaloupka, 1993	Тах	A-R driver MV fatality	A-R driver MV fatality 7		1982-1988
Dee, 1999	Tax	A-R driver MV fatality	16	48	1997-1992
Evans, 1991	Tax	SVN	12	50	1975-1986
Mast, 1999	Тах	A-R driver MV fatality	9	48	1984-1995
Ruhm, 1995	Тах	Total MV fatality	14	48	1975-1988
Ruhm, 1996	Тах	Total miles MV fatality	7	48	1982-1988
Saffer, 1987a	Tax	Total MV fatality	7	48	1975-1981
Saffer, 1987b	Тах	Total MV fatality	7	48	1975-1981
Sloan, 1994	Price	Total MV fatality	7	48	1982-1988
Smart, 1998	Price	A-R driver MV fatality	19	1	1975-1993
Whetten-Goldstein, 2000	Price	A-R driver MV fatality	12	50	1984-1995
Young, 2000	Тах	A-R driver MV fatality	9	48	1982-1990
Young, 2006a	Price	Total MV fatality	19	48	1982-2000

Note: All but Saffer, 1989 are longitudinal studies conducted at the state/province level.

Results

Study name	Statistics for each study					
	Correlation	Lower limit	Upper limit	Z-V alue	p-Value	
Saffer, 1989	-0.20	-0.31	-0.09	-3.51	0.00	
Adrian, 2001	-0.65	-0.85	-0.28	-3.10	0.00	
Chaloupka, 1993	-0.26	-0.36	-0.16	-4.85	0.00	
Dee, 1999	-0.09	-0.16	-0.02	-2.50	0.01	
Evans, 1991	-0.11	-0.19	-0.03	-2.80	0.01	
Mast, 1999	-0.01	-0.10	0.09	-0.19	0.85	
Ruhm, 1995	-0.21	-0.28	-0.13	-5.31	0.00	
Ruhm, 1996	-0.14	-0.24	-0.03	-2.51	0.01	
Saffer, 1987a	-0.21	-0.31	-0.11	-3.91	0.00	
Saffer, 1987b	-0.24	-0.34	-0.13	-4.43	0.00	
Saffer, 1997	-0.03	-0.09	0.02	-1.15	0.25	
Sloan, 1994	-0.44	-0.67	-0.11	-2.60	0.01	
Smart, 1998	-0.37	-0.71	0.10	-1.57	0.12	
Whetten Goldstein, 2000	-0.01	-0.09	0.07	-0.27	0.79	
Young, 2000	-0.02	-0.12	0.08	-0.37	0.72	
Young, 2006a	-0.05	-0.11	0.02	-1.40	0.16	
Summary	-0.13	-0.18	-0.08	-5.05	0.00	

UF FLORIDA

0.00

0.50

1.00

Conclusions—Traffic Crashes

- Beverage alcohol taxes are significantly related to crash involvement
 r = .13
- A one standard deviation increase in tax is related to a 0.13 standard deviation decrease in alcohol-related fatal traffic crashes
- Beer tax increase of 14 cents per liter (a 24% increase) related to decline in fatal a-r crashes of 3.3 per year per state (a 3% decline)
- Elasticity: 10% increase in tax related to 1.3% decline in a-r crashes
- Policies that raise taxes on alcoholic beverages reduce the burden of alcohol-related automobile crashes, injuries and deaths.

Alexander C. Wagenaar, PhD Professor of Epidemiology

University of Florida College of Medicine Dept of Epidemiology & Health Policy Research and Institute for Child Health Policy 1329 SW 16th St. Rm 5130, Box 100177 Gainesville, FL 32610-0177 U.S.A. (352) 265-0111 ext. 85683

wagenaar@gmail.com

Effects of Alcohol Tax Increases on Alcohol-Related Disease Mortality in Alaska: Time-Series Analyses from 1976 to 2004

American Journal of Public Health, 2009

Alexander C. Wagenaar, PhD and colleagues University of Florida College of Medicine Dept of Epidemiology and Health Policy Research and Institute for Child Health Policy

Research Design

- O_t: Observation at given time t, with each t being one quarter of a calendar year
- X₁ : Increase in alcohol tax in August 1983
- X₂: Increase in alcohol tax in October 2002
- m : Number of quarterly observations before first tax increase (m=30)
- n : Number of quarterly observations after first tax increase and before the second tax increase (n=77)

Measurement

Alaska Alcohol Excise Tax Changes

August, 1983: Beer 1 from \$0.25 to \$0.35 per gallon Wine 1 from \$0.25 to \$0.35 per gallon Spirits 1 from \$4.00 to \$5.50 per gallon

October, 2002: Beer 1 to \$1.07 per gallon Wine 1 to \$2.50 per gallon Spirits 1 to \$12.80 per gallon

Measurement

Alcohol-related Mortality Outcomes
 Alcohol-caused mortality (AAF = 1.0)
 Alcohol-related mortality (0.35 < AAF < 1.0)</p>

Source: National Vital Statistics System

ARIMA plus Structural Model

 $(1 - B^4)Y_{it} = \alpha + \omega_1 I_{1t} + \omega_2 I_{2t} + \psi_i X_i + \beta Z_t + (1 - \Theta B^4)u_t$

- $Y_{i=1}$ to $Y_{i=3}$ three outcomes
- t_1 to t_{116} quarter (1976 2004)
- ω_1 effect of 1983 tax increase
- *I*_{1t} 1983 tax increase step function
- ω_2 effect of 2002 tax increase
- *I*_{2t} 2002 tax increase step function
- ψ_{i} effects of outliers

- X_i outliers
- β effect of Z_t
- Z_t frequency (or rate) of alcoholrelated disease in comparison states
- θ first-order moving average
- Θ first-order seasonal moving average
- *u*_t random (white noise) error
- *B* backshift operator such that $B(y_t)$ equals y_{t-4}

Rate of Quarterly Alcohol-related Disease Mortality per 100000 Population Aged 15 Years and Older

Press Coverage

- ABC Broadcast News "Medical Minute"
- Bloomberg News
- Chicago Tribune
- CNN, CNN Radio, CNN International
- Denver Post
- Detroit Free Press
- Los Angeles Times
- Medical News Today
- NewScientist
- Science Daily
- U.S. News & World Report
- Washington Post

"Expensive Booze Could Lower Alcohol-linked Deaths"

"Raising Alcohol Taxes Shown to Reduce Deaths"

"Alcohol Disease Mortality Decreases After Tax Increases"

"When Alcohol Taxes Go Up, Deaths Go Down" "Study Correlates Death by Drinking, Price of Alcohol" "Study Suggests Alcohol Taxes Affect Death Rate" "Cheap Booze Can Lead to More deaths" "Study: Paying More for Alcohol Saves Lives" "Where Booze Costs the Most, Fewer People Die"

"Higher Alcohol Taxes Reduce Alcohol-related Mortality"

"Raising the Tax on Alcohol May Actually Save Lives"

"Why Charging More for Alcohol Could Save Lives"

"High Taxes Better Way to Lower Risk of Alcohol-related Death"

Some of the States with Alcohol Tax Bills

- AR: SB 90
- HI: SB 42
- ID: HB 12
- IN: HB 129 & HB 1613
- KS: HB 2062
- NE: LB 59
- NY: HB 2454
- SD: HB 1038
- TX: SB 462

CA: Governor proposed NM: Debates underway FL: Media discussions

- - -

Alexander C. Wagenaar, PhD Professor

University of Florida College of Medicine Dept of Epidemiology & Health Policy Research and Institute for Child Health Policy 1329 SW 16th St. Rm 5130, Box 100177 Gainesville, FL 32610-0177 U.S.A. (352) 265-0111 ext. 85683 wagenaar@gmail.com www.ehpr.ufl.edu/wagenaar.shtml

