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American Water is the largest water 
and wastewater services provider in 
North America, headquartered in 
Voorhees, NJ. 

American Water provide services to 
approximately 15 million people in 
more than 1,600 communities in 32 
states and in Ontario, Canada; and 
employs nearly 7,000 water 
professionals.  

American Water owns or operates 
nearly 400 drinking water systems 
and 300 wastewater facilities.

We treat and deliver over a billion 
gallons of water daily

The company conducts over one 
million water quality tests each year 
for over 100 regulated parameters, 
and up to 50 types of water-related 
tests each day.

www.amwater.com
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Physical Integrity

• According to water industry statistics, it will take 300 years 
to renew the existing pipes at the current rate of replacement.

• The USEPA has indicated that >$300 billion will be needed to 
replace or repair aging infrastructure over the next 20 years.  

• The American Society of Civil Engineers reports that an average of 
6 billion gallons per day of potable water are lost through the 
leaky pipes and services in the United States everyday.

• The loss of physical integrity – where the system no longer acts 
as a barrier that prevents external contamination from 
deteriorating the internal, drinking water supply 

• When physical integrity is compromised, the drinking water 
supply becomes exposed to contamination that increases the risk 
of negative public health outcomes.
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Hydraulic Integrity

• The hydraulic integrity of a water distribution system is 
defined as its ability to provide a reliable water supply at an 
acceptable level of service—meeting all demands for 
adequate pressure, fire protection, and reliability of 
uninterrupted supply. 

• The most critical component of hydraulic integrity is
adequate pressure defined in terms of the minimum 

and maximum design pressure. 

• A second element of hydraulic integrity is the reliability of 
supply, which refers to the ability of the system to maintain 
the desirable flow rate even when components are out of 
service. 
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Water Quality Integrity

• For water quality integrity to be compromised, specific 
reactions must occur that introduce compounds or 
undesirable microbes into the bulk fluid of the distribution 
system. 

• Even in the absence of external contamination, however, there 
are situations where water quality is degraded due to 
transformations that take place within piping, tanks, and 
premise plumbing 
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Presentation Outline

• Explore the concept of pressure transients

• Intersection of 
physical

hydraulic 

water quality

• Develop a risk model for pressure transients

• Evaluate risk mitigation

• Conclusions
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Transient Pressures from Unsteady Flow

main breaks
leaks

power loss at pump velocity change pressure wave

ΔH = (c / g) ΔV
ΔH = instantaneous 

pressure head change
downstream of pump

c = wave speed
g = acceleration 

ΔV = change in velocity

High Pressures TransientsHigh Pressures Transients

Low Pressure TransientsLow Pressure Transients
Intrusion, backflow of contaminants

http://www.kettering.edu/~drussell/Demos/waves/
wavemotion.html

Fleming et al.  2006. Susceptibility of Distribution Systems to Negative Pressure 
Transients. Awwa Research Foundation, Denver, CO.



Negative for > 16 sec;
as low as –10.1 psi (-69 kPa)

Gullick et al.  2005. J. Water Supply & Technol. – AQUA 54(2): 65-81.

Example:  Pressures Transient
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Source of External Contamination

Karim et al. (JAWWA 95(5): 134-146, 2003) showed that soil and non-potable 
water surrounding distribution pipes can contain a variety of microbiological 
pathogens, including fecal indicators and culturable human viruses
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Overall 56% (18/32) of samples were positive for viruses:  enteroviruses (Sabin strain), 
Norwalk, and Hepatitis A virus

Karim et al. JAWWA 95(5): 134-146, 2003
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Intrusion Algorithm 

Determine combined pathogen 
concentration at each node 

Set initial 
pathogen conc. 

at intrusion 
locations

Set initial 
pathogen conc. 

at intrusion 
locations

IDENTIFY 
INTRUSION 
LOCATIONS

IDENTIFY 
INTRUSION 
LOCATIONS

power outagepower outage

Determine pathogen 
transport

Calculate customer’s 
infection risk

Assumes:

• 10% leakage at 60 psi (414 kPa)

• No residual disinfectant
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Identify intrusion locations

• System has max day flow of 
13 MGD

• Serves population of 33,182

• The water system model has 
1128 nodes and 1369 pipe 
segments, representing 167 
miles of pipe

• 118 nodes (11%) susceptible to 
intrusion during power outage 
at the southwest pump station

pressure greater than 0 psi

pressure < 0 psi

Power outage
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Development of QMRA
1. External virus concentration

2. Negative pressure duration

3. Intrusion volume

4. Dilution

5. Virus Transport

6. Population Exposed

7. Coincidence of exposure

8. Volume consumed

9. Dose Response

10. Risk Calculation
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Virus transport without a disinfectant residual

Ratio

Initial points of intrusion Virus transport after 24 h. 
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Risk Management Options

• External Virus Concentration
• Negative Pressure Duration
• Selection of Residual Disinfectant

Free chlorine

Monochloramine

• Minimum Disinfectant Residual
• Orifice size (amount of leakage)
• Number of Nodes Affected
• Pressure Management
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Impact of External Virus Concentration

Norovirus:

Geo Mean:  3.86 x 104  /L
Median:       4.94 x 104  /L

Although virus levels decreased 4 orders of 
magnitude, risk changed less than 10-fold 

EPA Acceptable Annual Risk: 1/10,000
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Norovirus Infectivity

Teunis et al., Journal of Medical Virology 80:1468–1476 (2008)

ID50 of18 viruses 
(dispersed)

Infection with 
Norwalk virus was 
associated with a 
68% probability of 
illness.
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Negative Pressure Duration

Short negative pressure events (<10 sec) may pose insignificant risk 

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1 s 10 s 20 s 100 s 500 s 1000 s

Intrusion Duration (s)

In
fe

ct
oi

n 
R

is
k-

-

EPA Acceptable Annual Risk: 1/10,000



21

Role of Residual Disinfectant

Free chlorine can eliminate virus risk due to intrusion of 0.1% wastewater

EPA Acceptable Annual Risk: 1/10,000
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Role of Chloramine Residual

Although chloramines inactivate Norovirus, risk remains as long as some 
viruses persist in the system
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Minimum Disinfectant Residual

Free chlorine residuals >0.2 mg/L eliminated Norovirus virus risk due to 
intrusion of 0.1% wastewater

EPA Acceptable Annual Risk: 1/10,000
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Orifice size (amount of leakage)

2.5%                               10%                          40%
System Leakage

Reducing the orifice size (amount of leakage) had little impact on intrusion risk

EPA Acceptable Annual Risk: 1/10,000
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Number of Nodes Drawing Negative Pressures

Reducing the number of nodes experiencing negative pressures will reduce risk
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Comparison of Norovirus and Rotavirus Risk

Rotavirus risk is similar to Norovirus

EPA Acceptable Annual Risk: 1/10,000
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Conclusions
Sufficient information is available to model risks from intrusion.  
This study examined just one set of scenarios.
The coincidence of virus consumption and the duration of the 
negative pressure event are the most critical parameters driving risk.

Single events of short duration pose little risk

Maintenance of a free chlorine residual (>0.2 mg/L) provides 
a protective barrier against low-level intrusions. 
A monochloramine residual (0.5 mg/L) does not have a big impact on 
Norovirus risk reduction due to the highly infectious nature of the 
viruses. 
External virus concentrations, virus infectivity, mixing, or orifice size 
had little impact of risk.
Pressure management to reduce the extent of negative pressure 
events is particularly important in chloraminated systems.
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