

Outline What is the Problem? Overview Nature of the problem · Screening use may affect observational risk-• Goals of the research factor estimates Types of screening bias Differential screening behaviors across risk factor • Extent of the problem strata Screening frequency and proportion Mathematical model and components Modifies sampled population Nested case-control studies • Screening excludes/includes some cases • Differences in disease histories (e.g. disease • Results progression and disease stage at detection) • Summary and conclusions

- Under double null hypothesis in unbiased study, the ratio of risk-factor strata incidence rates = 1; any deviation represents screening bias
- To theoretically correct for screening bias, multiply observed risk estimate by 1/simulated risk estimate
- · Model must be validated before use as a correction

Summary and conclusions

PLCO Study Overview

- PLCO: Prostate, Lung, Colorectal, and Ovarian cancer screening trial
- ~77,000 men and ~77,000 women aged 55-74 randomized to intervention or usual-care group followed for minimum of 13 years
 - Enrollment: 1993 2001 at 10 sites around the U.S.
- Demographic characteristics, known risk-factors for studied cancers, and screening history were collected from all participants at baseline

Study Designs

- Twenty-seven studies: between PLCO study years T0 and T5
- Random sample of 200 Cases and use incidence density sampling to select 4 controls at diagnosis date of each case
- Repeated sampling 100 times for each of the 27 designs

Purpose of Different Designs

- To identify the effect of selecting a sample:
 - from all calendar enrollment years, 1993-2001 compared to selecting only after protocol change, 1995-2001
 - from intervention group compared to usual-care group
 - over varying lengths of case-ascertainment period

Outline

- Overview
- Mathematical model and components
- Nested case-control studies

Results

- Parameterization of model
- Simulation results
- Nested case-control results
- Comparison
- Summary and conclusions

Parameterization of Model for Lung Cancer Case-control Studies

- Use study specific age group distribution
- Use literature-based screening sensitivity
- For the preclinical duration, used several modes (1,3,5,10) and standard deviations (1,3,5) for the log normal distribution
- Overdiagnosis was explicitly incorporated by mixing in a proportion with a preclinical duration with mode (20) and standard deviation (5)

- 86-95: pre-study rates
- 96-05: in-study rates
- adjusted by mean of preclinical duration distribution = preclinical incidence functions
- Proportion screened and screening rate functions estimated from study data
 - Proportion: age-dependent 2° polynomial for the fraction of individuals screened
 - Rate: age-dependent 2° polynomial for frequency of screening among those screened

Simulation Results

- Determine if screening bias has the potential to affect the observed RR
- Use two study designs representative of the extremes for screening behavior differential
 - Sampled from intervention group affected by procedural modification (enrolled between 95-01)
 - Sampled from usual-care group from entire PLCO enrollment period (93-01)

Simulation Results – Parameter Influence

- How do components of the mathematical model influence the simulated RR
 - Screening behavior differential
 - Different mode and standard deviations for the preclinical duration lognormal distribution
 - Look at model sensitivity to overdiagnosis and chest x-ray screening sensitivity
- Add two study designs
 - Corresponding study sampled from either intervention or usual-care group missing from previous pair

Model Sensitivity to Chest X-ray Sensitivity in Intervention Group					
Lognormal distribut	ion for preclinical dura				
	Mode = 1	Mode = 3	Mode = 5	Mode = 10	
Standard dev. = 1	1.09	1.32	1.64	1.99	
Standard dev. = 3	1.19	1.43	1.67	1.98	
Standard dev. = 5	1.24	1.49	1.70	1.97	
Lognormal distribut	p sampled after proced ion for preclinical dura Mode = 1				
Standard dev. = 1	1.13	1.46	1.79	1.94	
Standard dev. = 3	1.25	1.54	1.78	1.94	
Standard dev. = 5	1.31	1.59	1.78	1.93	
	p sampled after proced ion for preclinical dura Mode = 1		nosis and chest x-ray	ensitivity of 86%	
			Mode = 5	Mode = 10	
Standard dev. = 1	1.18	1. 57	1.83	1.86	
Standard dev. = 3	1.31	1.62	1.79	1.85	
Standard dev. $= 5$	1.37	1.64	1.78	1.85	

	Sensitivit ntion Gro	-	g	
) Intervention grou	p sampled after procee	dural modification: S	simulation results u	sing smoked variable:
Lognormal distribut	ion for preclinical dura	ation with no overdi	agnosis chest x-ray	sensitivity of 46%
	Mode = 1	Mode = 3	Mode = 5	Mode = 10
Standard dev. = 1	1.09	1.32	1.64	1.99
Standard dev. = 3	1.19	1.43	1.67	1.98
Standard dev. = 5	1.24	1.49	1.70	1.97
		tion with 20% overc		x-ray sensitivity of 46%
lognormal distribut	Mode = 1	Mode = 3	2.04	Mode = 10 2.03
·	Service of the service service service service	2.05		MI O O
Standard dev. = 1	2.07	0.07		
Standard dev. = 1 Standard dev. = 3	2.07	2.06	2.05	2.04
Standard dev. = 1		2.06 2.06	2.05	2.04
tandard dev. = 1 standard dev. = 3	2.07			

Summary- Design Influence

Simulation results suggest increased bias with:

- Shorter case-ascertainment period
- Sampling only from the intervention group
- Sampling only after screening procedural modification

Conclusions

suggested

- There are likely other types of bias (besides screening bias) also influencing these observed RRs making validation of the mathematical model using the described
- mathematical model using the described empirical comparison technique difficult
 When conducting observational studies where screening bias may arise in addition to using a design to minimize screening bias, a collection of detailed screening information is

Future Research Test if screening bias can be adequately adjusted for using detailed screening variables in a regression model. Test the model sensitivity to adjustment of the underlying accumentations cuch as identifying how incorrecting a risk faster.

- assumptions such as identifying how incorporating a risk-factor disease association influences the simulation results.
- Use an optimization procedure to find "best" set of parameters for model including overdiagnosis
- Validate that the mathematical model can predict the amount of screening bias in an observational study of lung cancer incidence so it can be used as a correction factor.
- Include additional variables in the mathematical model as identified from a casual diagram
- Modify and apply the mathematical model to other diseases and their forms of early detection.

Thank you

- Committee members and U of MN SPH
- NCI and PLCO Investigators & Coordinators
- Question or comments?