Public Health Funding Formulas in Political Context

Lydia Ogden, MA, MPP Emory University Institute for Advanced Policy Solutions

Acknowledgments

• Coauthors:

James W. Buehler, MD Patrick A Bernet, PhD

• Funder:

Robert Wood Johnson Foundation, Healthcare Financing & Organization Program

Project Overview

- 1. Identify metrics to compare alternative allocations in public health programs
- 2. Describe the effects of metrics on allocations and evaluate against program aims
- 3. Explain the effect of adjustments on differences among states
- 4. Discuss political and policy implications

Funding Formula Use

- Formulas used to allocate >\$400B annually across the federal government (not counting ARRA)
- For most HHS formula grants, the allocation formula and data elements are specified in statute
- Formulas have limited use in federal public health (CDC, HRSA) compared to other social programs
- Use by states for public health is largely unknown
- Collaborating with ASTHO on a survey of state health departments

Previous Analyses

- Large body of literature on fiscal federalism not specific to health:
 - Instruments for intergovernmental transfers: block grants, restricted funds, matching grants
 - Funding schema: fixed amount per jurisdiction, proportional amount, other formulas
- Large body of literature on Medicaid and SCHIP
- 2002 IOM panel on Ryan White CARE Act: Data for Resource Allocation, Planning, and Evaluation
- 2000 IOM workshop focused generally on formula statistical issues
- 2003 IOM workshop focused generally on formula design

Our Analysis (Part 1)

- Examined existing federal formula-based allocations
- Examined hypothetical federal programs using existing formula models
- Examined alternative allocations
- Examined funding adjustors

Measures of need for service Expressed as each state's percent of U.S. total

DHHS Agency Allocations

- CDC: PH Emergency Preparedness
- CDC: Pandemic Influenza Planning
- CDC: Preventive Health & Health Services
- HRSA: Title V MCH

Hypothetical Allocations

- P1: Base+: 20% divided equally, 80% based on population
- **P2: Number of smokers**
- **P3: Number with hypertension**
- P4: Number of deaths <65 years (premature mortality)

Measures of need for service Expressed as each state's percent of U.S. total

<u>Alternative allocation models</u>:

- Population size (per capita)
- Number living in poverty (per personin-poverty)
- Number receiving food stamps (per food-stamp-recipient
- "Income disparity inversion" (per share of national income disparity)

Adjustors based on need Expressed as ratio: state value / US value

- Cost of delivering service
 - BLS
 - Land area (proxy for transportation costs)
- Wealth/tax revenue potential
 - Per capita income
 - FMAP
 - Enhanced FMAP
 - Total taxable revenues
 - Housing values

- Income inequality
 - Gini coefficient
 - Theil index
 - Atkinson index (ε=0.5, 1.0, 1.5, 2.0)
 - Squared coefficient of variation
 - Mean logarithmic deviation

Comparison Metrics

- Percentage of funds shifted
- Coefficient of variation
- Percentage change in cumulative distribution
- Range of change
 - Number of states with >20% \uparrow or \downarrow
 - % of US population in states with >20% \uparrow or \downarrow
 - Maximum \uparrow or \downarrow
- Proportionality of Allocation (PA): per capita, per person-in-poverty, per smoker

Example: CDC's Emergency Preparedness Funding

	Current Allocation		
	Adjusted for		Per Person in
	Differences in Per	Per Capita	Poverty
	Capita Income	Allocation*	Allocation*
Percent of total allocation moved	5%	10%	14%
Number of states with >20% increase	4	4	8
Number of states with >20% decrease	4	22	25
Percentage of US population in states	40/	200/	270/
with >20% increase	4%	30%	37%
Percentage of US population in states	<u> </u>	110/	210/
with >20% decrease	6%	11%	21%
Maximum percentage increase	36%	34%	70%
Maximum percentage decrease	33%	-77%	-82%

* Changes reflect effects of removing guaranteed minimum baseline funding.

Our Findings (Part 1)

- Adjustors matter a lot
- Income and disparity adjustors push allocations:
 - Away from per capita referent
 - *Toward* per person-in-poverty referent (obviously)
- Changes to existing formulas result in changes to allocations that will have consequences for program and in the policy environment

Our Analysis (Part 2)

- What are the <u>policy</u> implications of various metrics?
 - What biases are built into a given formula?
 - Why poverty?
 - Which measure?
 - Effects on program aims
 - Effects on program evaluation

Our Analysis (Part 2)

- What are the <u>political</u> implications of various metrics?
 - Money begets money states with money are likely to get more
 - "Flypaper effect" federal money sticks and may displace state spending
 - Cui bono? Cui malo?
 - Effects on program evaluation: P4P
 - Effects on perception of efficiency, effectiveness, equity, impact, utility

Summarizing

- Formulas are thought to be transparent and "fair"
- But every formula has biases e.g., definition of and data on persons living in poverty
- Public health practitioners must be aware of those biases – they may choose to do nothing about them (or may be unable to)
- Developing formulas is hard
- Changing existing formulas and allocations is probably harder