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Discussion points

Multiple endpoints: advantages, challenges, and strategies

Strategies for atypical data

O’Brien’s rank sum composite method

Reading a power curve at a glance 

– (Type I error and power by eye)

Evaluating selected analytical techniques

Recommended analytical techniques for specific situations
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Why multiple endpoints?

Treat the whole patient
Measure the whole patient

For example:
Decrease pain
Increase mobility
Decrease risk of mortality
Increase cognitive ability
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Challenges in Head Injury trials:

Subjects die
Subjects often quite severely injured (cannot be tested)
Distributions are highly skewed
Endpoints are highly correlated
Variables of interest are binary, categorical, or continuous  

And I want to combine these variables!
It’s about assessing the whole patient.

Severely injured

Highly skewed

Histogram of Test Score 6 months after head injury
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Strategies for multiple endpoints

Bonferroni adjustments

Combine data into a composite measure

– O’Brien’s Rank Sum Test

Use a global statistic 
– generated by a generalized linear model (GLM)
– utilizing generalized estimating equations (GEE) 
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Strategies for atypical data 
(non-normality)

Rank the data: 
Multiple rank tests (Bonferroni corrected)
One rank test (composite rank sum)
ANOVA (composite rank sum)

Dichotomize the data: 
Multiple chi-square tests (Bonferroni corrected)
Global OR (logistic regression GEE)

Place data on ordinal scale: 
Global OR (ordinal logistic regression GEE)

Standardize outcomes: 
Multiple t-tests (Bonferroni correction)
Global change in effect size (simple generalized linear model GEE)
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Composite Rank Sum
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Results of simulations
(thousands of simulations)

With normal data
– Best performers (highest power)

Composite rank sum
Global effect size (simple GLM GEE)

Large numbers of endpoints
– Global OR (ordinal logistic regression GEE)

Failed with large numbers of highly correlated endpoints 
Increase in studies falsely declared positive (Type I error)

– Other methods had low risk of falsely declaring a study positive.
High correlation

– Ability to detect a true positive result (power) decreased as correlation 
increased across all methods 

– Not unexpected
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ANOVA on rank sums
Mann-Whitney on rank sums
Adjusted Dichotomous Logistic Regression GEE
Identity Link continuous data GEE
Adjusted Ordinal Logistic Regression GEE
Mann-Whitney w ith Bonferroni correction
Welch's t-test w ith Bonferroni correction
Pearson's Chi Square w ith Bonferroni Correction

16 endpoints with 0.8 correlation

Sample size =  150   Outcomes measures =  16   Cutpoint for dichotomization =  0.5   Iterations =  1000
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Y-axis: probability of 
detecting a difference 

between groups

X-axis: actual but 
unknowable difference 

between groups

False positive: detecting 
a difference between 
groups when there is 
none (Type I error)

True positive: detecting a 
difference between groups 
when there is one (power)

Thousands of simulations 
created power curves 

for comparison 
of selected 

analytical techniques

OLR GEE here has a high 
false positive rate 

OLR GEE here has the lowest ability 
to detect a true positive result

(lowest power)
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Results of simulations

Null treatment effect in some endpoints
– Greatly decreased performance - most techniques
– Least affected - Bonferroni Rank test

Deaths with similar mortality in both groups
– Best - Global OR (Logistic regression GEE)

Deaths with improved mortality in treated group
– Performed equally well

Global OR (Logistic regression GEE)
Composite rank sum

– Notably worse
Global effect size (simple GLM GEE)
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ANOVA on rank sums
Mann-Whitney on rank sums
Adjusted Dichotomous Logistic Regression GEE
Identity Link continuous data GEE
Adjusted Ordinal Logistic Regression GEE
Mann-Whitney w ith Bonferroni correction
Welch's t-test w ith Bonferroni correction
Pearson's Chi Square w ith Bonferroni Correction

24 % Deaths in Treatment group and  30 % Deaths in Placebo group

Sample size =  150   Outcomes measures =  4   Cutpoint for dichotomization =  0.5   Iterations =  1000
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Discussion

O’Brien’s composite rank sum with ANOVA performed well with: 

– Large amounts of highly correlated endpoints

– Large mortality percentages 

(or those who would be untestable)

Results favor use of composite rank sums

Rank sum score is difficult to interpret
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Discussion

Global OR (Logistic regression GEE)
– Second best technique
– Performs well despite:

Large amounts of highly correlated endpoints
Death

– Interpretable analysis
Bonferroni

– Poorest performance in most situations with notable exception of:
Null treatment effect in some endpoints

– This is a caution to investigators about including possibly unaffected 
endpoints in the model
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Conclusion

O’Brien’s composite rank sum

– powerful technique in most situations

Global OR (logistic regression GEE )

– an effective choice when interpretability of the results is a 

priority
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