

PURPOSE OF THE STUDY

- Explore whether different measures of spatial accessibility identify the same areas of high and low access
- Explore whether population characteristics predict supermarket accessibility similarly across spatial measures

ACCESSIBILITY

Penchansky & Thomas (1981) framework

- Availability
- Accessibility
- Affordability
- Acceptability
- \circ Accommodation

This study-availability and accessibility

ACCESSIBILITY

- Potential vs. realized
- Different measures
 - Cumulative opportunities
 - Gravity models
 - Utility models
 - Little comparison of measures in literature

PREVIOUS SUPERMARKET ACCESS STUDIES

- Container measure most common
- Low-income and low-income Black usually predictive of less access
- Few studies looked at other races or ethnicities
- o Limitations
 - Cumulative opportunities measures
 - Single measures
 - Modifiable area unit problem
 - Lack of independence
 - Spatial clustering

STUDY DATA: SUPERMARKET LOCATIONS

- ${\scriptstyle \circ}$ Industry datasets
- Visual confirmation & additions 2007
- Population/store
 - 10,261 in Chicago
 - 7,029 in McHenry County
- Supermarket = >\$2 mill in annual sales

Store Type	#	%
Full Service Chain	258	31.2
Discount	118	14.3
Independent	355	43.0
Specialty	27	3.3
Supercenter	28	3.4
Wholesale and Warehouse	40	4.8
Total	826	100

STUDY DATA: POPULATION • 2000 US Census • Populated units • Block groups – 5,779 • Census tracts – 1,826 • Zip codes – 350 • Variables • Population density • Race/ethnicity • Education • Median & aggregate household income • Family size • Home ownership & value

ACCESSIBILITY MEASURES • 6 Measures Studied • Cumulative Opportunities • Container: # stores/area (block group, census tract, zip code) • Coverage: # stores wii 2 miles of block group centroid • Minimum Distance: distance to closest store • Average Distance: avg. distance to all stores in 2 mile radius • Gravity Models • Gravity Morenel: population density divided by density of stores wii 2 miles • Two-step floating catchment area: facilities w/i 2 miles weighted by catchment population • Network distance & population weighted centroids • Software • ArcGIS 9.2, Network Analyst & Spatial Analyst Extensions

- GeoDa 0.9.8.8
- SPSS 15.0

${\rm H_{2^{*}}}$ Population Variables Differ Between Supermarket Accessibility Measures

- Correlation
- Stepwise OLS
- ${\scriptstyle o}$ Spatial dependency and ML modeling
- Model fit Akaike Information Criterion
- Variable relationships
- $\circ R^2$

DISCUSSION DISCUSSION • Know your community • Modifiable areal unit problem is important • Measures are different · Spatial dependency, independent variables · Choose the smallest meaningful population unit Different high/low accessibility areas · Different relationships with population variables • Spatial dependency plays a role • Cannot combine for meta-analysis • Match the measure to the question Regression modeling—maximum likelihood Additional variables • Use more than one measure • Store location explained by more than local population • Low R² · Include other explanatory factors, e.g., taxes, space, etc.

STUDY LIMITATIONS Cross-sectional Ecological Within/between-area variability: modifiable areal unit problem; travel distance vs. travel time Unmeasured confounding: non-population store location variables; shopper preference and behavior Effect modification: variables may not be discrete Contextual effects: non-spatial accessibility factors Measurement error: missing stores; alternate food sources Assumption of car use for shopping

