Calibration and Evaluation of a Dynamic Model that Projects Population Outcomes from Methylmercury Exposure from Local Fish Consumption Caroline Chan, MPH¹, John Heinbokel, PhD², John Myers, PhD³, Robert Jacobs, PhD¹

Caroline Chan, MPH¹, John Heinbokel, PhD², John Myers, PhD³, Robert Jacobs, PhD¹ Departments of Environmental & Occupational Health Sciences¹, Health Management & Systems Sciences², and Bioinformatics & Biostatistics³ University of Louisville School of Public Health and Information Sciences

Introduction

Contamination of fish has led to unacceptable exposure to methylmercury for many levels of Within highly US. exposed of the as subsistence fishers, the such populations, developing fetus is at particular risk for adverse effects. Regulatory agencies continue to consider how best to protect these populations. As a tool for these agencies, a dynamic model was developed to mercury concentrations in common project biomarkers of exposure in response to mercury concentrations in predatory fish from local waters. The model projects blood methylmercury, hair mercury, and cord blood concentrations for intake rates representing the mean, 90th, 95th, and 99th percentiles of populations of interest.

Model Design

User Interface

The model was calibrated to literature sources to maximize biomarker accuracy. Consistency was examined across the distribution of intake rates for all biomarkers. Chi-squared analyses were conduced using PASW Statistics 18, comparing the predicted values from literature sources to the observed model output.

 The relationship between ingestion of methylmercury to blood methylmercury levels was calibrated to Sherlock et al. (1984)⁴, which predicted a steady state blood methylmercury concentration of 0.8 μg/L for every 1 μg/day ingested.

. The relationship between blood methylmercury to hair total mercury was calibrated according to Clarkson et al. (2007)⁵. A ratio of 250 μg/kg total hair mercury to 1 μg/L blood methylmercury was used.

I blood: maternal blood methylmercury ratio used to calibrate	Chi-squared analysis p-values of expected versus observed model output.				
el was taken from Stern and Smith (2003) ⁶ . Their study led a central tendency ratio of 1.9 for the relationship between	Ingestion rate	Blood	Hair	Fetal Blood	
and cord blood methylmercury.	mean	0.500	0.456	0.450	
ared analyses showed not significant differences between	90	0.524	0.395	0.450	
the model slightly overestimates biomarker concentrations at	95	0.395	0.395	0.382	
est ingestion rates.	99	0.395	0.395	0.382	

For model evaluation, output was compared to additional literature sources to further strengthen confidence in the output. For literature sources providing regression equations, a range of values were input for the dependent variable. Other literature sources provided summary statistics which were used to generate regression equations. The mean and 95% confidence interval of the slopes of the literature sources for each biomarker were compared to the slope of model output.

Slopes of Regression Equations								
Relationship		95% Confide	Model Output					
	mean	lower	upper					
ood methlymercury and ingestion	0.024	0.008	0.040	0.028				
tal hair mercury and blood methylmercury	283	235	331	250				
tal and maternal blood methylmercury	2.1	1.5	2.6	1.9				

The slopes of model output fall within the 95% confidence interval of the slopes of literature sources for all evaluated relationships, showing no difference between model output and literature sources.

Population Descriptions

Distribution of intake rates of freshwater fish for populations in g/day

			Pero	centile		
Population	Mean	90	95	99	Source	Description
General	4.7	12.6	32.2	82.5	1	US population
Consumers only	68.0	170.8	224.8	374.7	1	US population that consumes fish
Women (15-44)	5.3	10.9	28.8	70.9	1	All women of childbearing age
Women (15-44)						Women of childbearing age who consume
Consumers	61.4	148.8	185.4	363.6	1	fish
Children (0- 14)	1.9	1.3	13.9	40.8	1	Children ages 0 to 14
Children (0-14)						
Consumers	45.7	108.4	136.2	214.6	1	Children ages 0 to 14 who consume fish
Anglers 1	7.4	20.6	24.6	41.1	1	Wisconsin sport anglers
Anglers 2	17.9	13.2	17.9	39.8	2	Lake Ontario sport fishers
Subsistence Fishers 1	55.5	150.0	200.0	338.0	3	Subsistence fishers on Savannah River
Subsistence Fishers 2	58.7	110.0	170.0	389.0	1	4 Native American tribes in Washington State

Conclusions

The developed model accurately projects the central tendency of biomarkers of exposure based on ingestion rates and fish tissue concentrations for populations of interest. It is a first step in linking environmental mercury levels to effects on nearby populations. With knowledge of the mercury concentration in fish from local waters, decision-makers can use the model to assess the portion of a population that is at risk and subsequently determine the decrease in fish tissue concentration needed to protect susceptible populations. The STELLA model depicts the disposition of mercury after ingestion in a simplified, yet understandable format, balancing accuracy, simplicity, and transparency. The model can be used as a tool to understand the impact of local fish consumption on local susceptible populations.

Literature Sources

- 1. USEPA, National Center for Environmental Assessment. Exposure Factors Handbook. 1997.
- 2. Connelly N, Knuth BA, Brown TL. N Am J of Fish Manage 1996, 16:90-101
- Burger J, Stephens WL, Boring CS, Kuklinski M, Gibbons JW, Gochfeld M. J Toxicol Environ Health, Part A 1999, 55:405-419
 Shealadh Hildeach Maasha D, Tanaina C, Mikiwha K, Hans Tariaal 1004, 2 117 121
- 4. Sherlock J, Hislop J, Newton D, Topping G, Whittle K. Hum Toxicol 1984, 3:117-131
- Clarkson T, Vyas J, Ballatori N. Am J Ind Med 2007, 50:757-764
 Stern AH, Smith AE. Environ Health Persp 2003, 111:1465-1470
- 7-13. Sources listed in Table 3 of WHO: Environmental Health Criteria 1: Mercury. Geneva: WHO; 1976.
- 14. Kershaw TG, Clarkson TW, Dhahir PH. Arch Environ Health 1980, 35:28-36.
- 15. Bjornberg KA, Vahter M, Grawe KP, Berglund M. Sci Total Environ 2005, 341:45-52.
- 16. Abdelouahab N, Vanier C, Baldwin M, Garceau S, Lucotte M, Mergler D. Sci Total Environ 2008, 407:154-164.
- Johnsson C, Schutz A, Sallsten G. J Toxicol Environ Health, Part A 2005, 68:129-140.
 Berglund M, Lind B, Bjornberg KA, Palm B, Einarsson O, Vahter M. Environ Health: Glob Access Sci Source 2005, 4(20).
- 19. CDC. *MMWR* 2001, 50(8):140-143.
- 20-24. Sources listed in Table 1 of WHO: Environmental Health Criteria 1: Mercury. Geneva: WHO; 1976.
- 25. Vahter M, Akesson A, Lind B, Bjors U, Schutz A, Berglund M. Environ Res Section A 2000, 84:186-194.
- 26. Ong CN, Chia SE, Foo SC, Ong HY, Tsakok M, Liouw P. BioMetals 1993, 6:61-66.
- 27. Hansen JC, Tarp U, Bohm J. Arch Environ Health 1990, 45(6):355-358. 28. Tsuchiya H, Mitani K, Kodama K, Nakata T. Arch Environ Health 1984, 39(1):11-17.
- 29. Soria ML, Sanz P, Martinez D, Lopez-Artiguez M, Garrido R, Grilo A, Repetto M. Bull Environ Contam Toxicol 1992, 48:494-501.

Acknowledgements

Financial support for this project was provided by the National Institute of Health Sciencesfunded Training Program in Environmental Health Sciences, grant number T32-ES011564.

This research is funded by U.S. EPA - Science To Achieve Results (STAR) Program

Grant # FP-91711701-0