


# Does How Often You Eat Matter?

Eating Frequency and Obesity in a Longitudinal Cohort of Adolescent Black and White Girls



Lorrene Ritchie, PhD, RD; Phil Spector, PhD; Patricia Crawford, DrPH, RD

Atkins Center for Weight and Health, University of California, Berkeley

#### Introduction

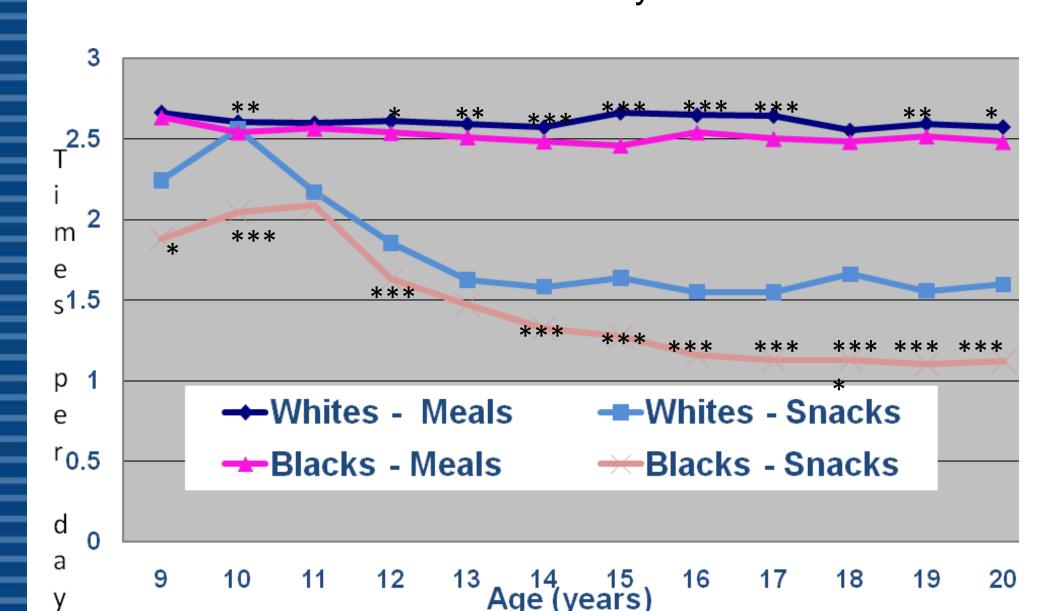
- The few studies that have investigated the relationship between eating frequency and obesity in children have had mixed findings.
- The literature is complicated by the fact that there is no consensus on what constitutes a snack, meal, or eating occasion.
- Two nationally representative, cross-sectional studies found no relationship between meal frequency and adiposity.<sup>2</sup>
- Longitudinal studies have variously shown a positive relationship,<sup>3</sup> no relationship,<sup>4,5</sup> or an inverse relationship<sup>6</sup> between a measure of eating frequency and adiposity.
- 1. Siega-Riz et al. J Adolesc Health 1998;22:29-36.
- 2. McConahy et al. *J Pediatr* 2002;140:340-7.
- 3. Francis et al. *Obes Res* 2003;11:143-51.
- 4. Phillips et al. *Obes Res* 2004;12:461-72.
- 5. Field et al. *Int J Obes Relat Metab Disord* 2004;28:1210-6.
  6. Franko DL et al. *Int J Obes* (London) 2008;32:23-9.



#### Aims

- 1) Use an objective definition to quantify frequency of meals, snacks and total episodes.
- 2) **Track** eating frequency in girls across adolescence from ages 9/10 to 19/20 years.
- 3) Assess the **longitudinal** relationship of eating frequency with **BMI** and **waist circumference**.
- 4) Examine differences between black and white girls in eating frequency & relation to adiposity.

#### Methods


- Dietary assessment: 3-day diet record data collected nearly annually for 10 years
- Participants: 1,213 black and 1,166 white females ages 9/10 to 19/20 years in the longitudinal NHLBI Growth and Health Study
- Independent variables: aggregated number/day of
  - Meals any eating episode comprising 15% or more of total calories, regardless of the time of day or composition of foods or beverages consumed
  - Snacks all other eating episodes
  - Total eating episodes all meals + all snacks
- Dependent variables: 10-yr change in measured BMI (kg/m²) and waist circumference (cm)
- Control variables: Parental education, physical activity, TV/video watching, dieting for weight loss, overweight status at baseline (BMI ≥ 85th percentile)
- Statistical analysis: Means (±SD) computed; ANOVA followed by Tukey's Honestly Significant Difference multiple comparison tests used.

#### Results

- 1) Average frequency of eating aggregated across 10 years:
  - 2.56 ± 0.26 meals per day
  - 1.67 ±1.06 snacks per day
  - 4.23 ±1.01 total eating episodes per day

#### 2) Eating frequency lower in:

- Older vs. younger girls
- Blacks vs. white girls
- On weekends vs. weekdays



### Results (cont)

- 3) Eating more frequently related to:
  - Higher intakes of calories
  - Higher intake of most other nutrients.

#### 4) Adjusting for calorie intake:

- Eating more frequently related to lower intakes of fat, saturated fat and sodium, and higher intakes of fiber for white girls.
- For black girls the results were more variable depending on how eating frequency was quantified.

# 5) *Unadjusted* relationship between eating frequency and 10-year change in adiposity

|         | WHITE Girls    |               | BLACK Girls    |                |
|---------|----------------|---------------|----------------|----------------|
| (#/day) | BMI            | Waist<br>Circ | BMI            | Waist<br>Circ  |
| Meals   | Inverse<br>**  | Inverse<br>*  | NS             | NS             |
| Snacks  | Inverse<br>*** | Inverse<br>** | Inverse<br>*** | Inverse<br>*** |
| Total   | Inverse<br>*** | Inverse<br>** | Inverse<br>**  | Inverse<br>*   |

# 6) Adjusted relationship between eating frequency and 10-year change in adiposity

|         | Model 1: Adjusted for race, parental education, physical activity, TV viewing |                | Model 2: Also adjusted for dieting for weight loss |               |
|---------|-------------------------------------------------------------------------------|----------------|----------------------------------------------------|---------------|
| (#/day) | BMI                                                                           | Waist<br>Circ  | BMI                                                | Waist<br>Circ |
| Meals   | Inverse<br>*                                                                  | NS             | NS                                                 | NS            |
| Snacks  | Inverse<br>***                                                                | Inverse<br>*** | Inverse<br>*                                       | Inverse<br>** |
| Total   | Inverse<br>***                                                                | Inverse<br>**  | Inverse<br>*                                       | Inverse<br>*  |

\**P*<0.05, \*\**P*<0.01, \*\*\**P*<0.001, NS=not significant

### Study Strengths

- Prospective design with a long period of follow-up (10 years).
- Large sample size.
- Inclusion of multiple food records (as many as 24 days for each participant).
- Use of measured heights, weights and waist circumference.
- Control for multiple potentially confounding variables.

#### **Study Limitations**

- Only black and white adolescent girls limits generalizability.
- Definitions of eating episodes, although objective, may not be appropriate.
- Although controlling for baseline overweight did not alter the findings, girls more prone to weight gain may be more likely to under-report eating frequency.
- Reverse causality is possible: individuals may skip meals and omit snacks in an attempt to lose weight or prevent weight gain.

#### Conclusion

Greater eating frequency, particularly of snacks, predicts lower gain in adiposity in adolescent girls.

Intervention trials are needed to test if changing the frequency of eating impacts obesity risk.



## Acknowledgements

Participating NGHS Centers included the University of California, Berkeley; Children's Medical Center, Cincinnati; and Westat, Inc., MD. This project was supported by Agriculture and Food Research Initiative Grant #2006-35215-1668 from the USDA National Institute of Food and Agriculture.