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Vaccination Coverage

Vaccination has a dual role:

Protects an individual from vaccine preventable diseases

Reduces rates of vaccine preventable diseases in a community

Estimation of coverage is useful for:

Monitoring and evaluation of vaccination programs

Determining if the population coverage necessary for disease
elimination has been achieved

Assessing the health services available to children in a
community
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Motivating Data

Demographic and Health Surveys (DHS)

Mothers provide vaccination information for all children under
the age of 5.

This can be gathered by

child’s official vaccination card
maternal recall

The 2003 Kenya DHS reports that 60% of children had
vaccination cards available.

We want to assess the coverage of the the combined
diphtheria, pertussis, and tetanus vaccine (DPT) via the 2003
Kenya DHS, which is recommended at 6, 10, and 14 weeks.
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Available Methods

Simple point estimation of proportion vaccinated at specific
age intervals

Survival Analysis:

Uses time to vaccination as an outcome
Considers children unvaccinated at the time of interview to be
right-censored
Obtains vaccination coverage by 1 minus the Kaplan-Meier
survival function
Uses the Cox proportional hazards model to evaluate factors
affecting the timeliness of vaccination

Example
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Limitations of Available Methods

Limitations of Survival Analysis for Vaccination Data:

Requires exact data on the date of birth and date of
vaccination of the child

Some impute date of vaccination if missing
Some only analyze data for which date of vaccination is
available
This can bias the estimate of vaccination coverage

Does not directly model the vaccination coverage (uses
empirical estimates of the tail end of the “inverse”
Kaplan-Meier curve, which can be unstable)
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New Approach

Goal

Develop methods that provide accurate estimates of vaccination
coverage with reliable inference.

Our new approach:

Utilize data on all children who were vaccinated according to
either vaccination card or maternal recall

Use the age at the time of interview (x) and whether or not
the child was vaccinated (y = 0, 1), as indicated by either
vaccination card or maternal recall

Do not need dates of vaccination
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Challenges

Challenges in the new approach:

Binary data is often evaluated through logistic regression,
which models the probability of response on the full
probability range (0,1) Simulation

How to estimate a parameter constrained between 0 and 1?

How to enforce that constraint?
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Three Parameter Non-linear Logistic Growth Model

M1 : p(x) =
φ1

1 + e−(x−φ2)/φ3

M2 : p(x) =

1
1+exp(−λ)

1 + e−(x−φ2)/φ3

φ1 is the asymptote

φ2 is the point of inflection

φ3 is the exponential
growth rate parameter
(slope)
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Methods of Estimation

1 Non-linear least squares NLS

2 Maximum likelihood estimation MLE

Nelder-Mead algorithm Nelder-Mead

BFGS box-constrained algorithm L-BFGS-S

3 Bayesian estimation Bayesian
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Simulation Details

Compare performance of Models (1) and (2) under different
methods of estimation

True values are φ1=0.70 (λ=0.85), φ2=5.0, and φ3=1.5

500 simulations of sample size 350 are generated, where
x ∼ Unif(0.1, 15)

Bayesian estimation was run with 3 chains for 5000 iterations.
The first 1000 iterations were discarded for burn-in, and
convergence was verified by the Gelman and Rubin statistic R̂

User input
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Model 1 CIs

0.6 0.8 1.0 1.2 1.4

PHI 1

N
LS

2 4 6 8 10

PHI 2

0 1 2 3 4 5

PHI 3

0.6 0.8 1.0 1.2 1.4

N
E

LD
E

R
−M

E
A

D

2 4 6 8 10 0 1 2 3 4 5

0.6 0.8 1.0 1.2 1.4

L−
B

F
G

S
−S

2 4 6 8 10 0 1 2 3 4 5

0.6 0.8 1.0 1.2 1.4

B
AY

E
S

2 4 6 8 10 0 1 2 3 4 5

McClintock (Emory) Estimation of Vaccination Coverage Using a Constrained Logistic Model 16 / 26



Introduction New Approach Simulation Data Analysis Conclusions

Model 2 Histograms
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Model 2 CIs
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Simulation Results

Bias Coverage Mean Length
λ φ1 φ2 φ3 λ φ1 φ2 φ3 λ φ1 φ2 φ3

Model (1)
NLS - 0.003 0.059 -0.005 - 94.4 92.8 94.0 - 0.17 1.89 1.63
NELDER-MEAD - 0.002 0.032 0.006 - 94.8 94.4 93.2 - 0.18 2.04 1.35
L-BFGS-S - 0.002 0.032 0.006 - 94.8 94.4 93.0 - 0.18 2.04 1.35
BAYES - 0.013 0.139 0.175 - 95.4 95.8 91.8 - 0.20 2.39 1.76

Model (2)
NLS 0.030 0.003 0.059 -0.005 93.4 93.4 92.8 94.0 0.98 0.17 1.89 1.63
NELDER-MEAD 0.022 0.002 0.032 0.006 94.4 94.4 94.4 93.0 0.89 0.18 2.04 1.35
BAYES 0.074 0.013 0.140 0.175 95.0 95.0 95.6 91.4 1.21 0.20 2.40 1.76

Example of erratic simulation
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Summary of DPT Outcomes in 2003 Kenya DHS

DPT1 DPT2 DPT3
Entry Value N (%) N (%) N (%)

No 0 881 (16.2) 1323 (24.4) 1930 (35.6)
Vacc. date on card 1 2580 (47.5) 2396 (44.1) 2157 (39.7)
Vacc. marked on card 1 20 (0.4) 20 (0.4) 18 (0.3)
Reported by mother 1 1949 (35.9) 1689 (31.1) 1323 (24.4)
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Analysis of 2003 Kenya DHS
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L-BFGS-S was not used
for Model (2) as it would
produce the same results
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algorithm.
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target vaccination age.

Numeric Results
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Conclusions

Model (2) appropriately constrains the numerator, but may be
unstable in certain data configurations

NLS not be robust to all situations

Bayesian framework is attractive:

naturally restrict parameter estimates through prior
distributions
inference does not depend on asymptotic rates of convergence
stability in the infrequent but not entirely rare data settings
yielding unstable MLEs
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Conclusions

The nonlinear logistic model can be used to estimate an
asymptote less than 1 when the outcome of interest is binary

We used this model to estimate vaccination coverage, which
also estimates two other meaningful parameters in this context

This model is most applicable to vaccination research in which
respondents are unable to estimate age at the time of
vaccination

This model enables researchers to base inference regarding
vaccination coverage on all respondents regardless of whether
or not they retained their vaccination cards, hereby eliminating
possible bias due to only analyzing complete data cases
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Future Work for Logistic Growth Model

Explore both model-based and design-based approaches to
account for the survey design in the analysis

Accommodate effects of other covariates Details

Investigate the effect of study design on parameter estimation

Investigate sensitivity of the analysis to starting points for
estimation algorithms and prior distributions for φ

Investigate behavior of the analysis with regards to the true
value of φ
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Non-linear functions

Non-linear functions can be used to estimate the upper bound
for unknown quantities

Applications include:

Ecologic population growth model
Pearl and Reed (1920) estimate the carrying capacity of the
United States human population
Bioassay (quantal or quantitative)
Rodbard and Frazier (1975) estimate antigen counts in
radioimmunoassay

Back
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CI for λ in Model (2)

From Model (2), φ̂1 = 1
1+exp(−λ̂)

.

Asymptotic confidence intervals for φ1 can be created by first
calculating asymptotic confidence intervals for λ via
λ̂± z1−α

2
∗ SE (λ̂) resulting in the interval (λ̂L, λ̂U).

Then apply the transformation
(

1
1+exp(−λ̂L)

, 1
1+exp(−λ̂U )

)
to create

a confidence interval for φ1.

Back
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Constrained Simulation Results
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Non-linear Least Squares

For Model 1, NLS minimizes
∑

i


Yi −

φ1

1 + exp
(
− (xi−φ2)

φ3

)




2

Even though Yi are not normally distributed in our
application, nonlinear least-squares estimates are consistent as
long as Models (1) and (2) are correctly specified

Can be calculated by the nls function in R, which uses the
Gauss-Newton algorithm

No inherent upper bound on the the estimate of φ1

In our application, φ1 should never exceed one

Back
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Maximum Likelihood Estimation

The outcome is binary, following the form

yi ∼ Bern(pi ), pi =
φ1

1 + e
−(xi−φ2)

φ3

with likelihood given by

log L(θ) =
n∑

i=1

log
[
pyi

i (1− pi )
1−yi

]

=
n∑

i=1

log




 φ1

1 + exp
(
− (xi−φ2)

φ3

)




yi

1− φ1

1 + exp
(
− (xi−φ2)

φ3

)




1−yi



=
n∑

i=1

yi log φ1 − log

{
1 + exp

(
− (xi − φ2)

φ3

)}

+ (1− yi ) log

{
1 + exp

(
− (xi − φ2)

φ3

)
− φ1

}

Back
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Maximum Likelihood Estimation

Let Φ = (φ1, φ2, φ3), ai =
−(xi − φ2)

φ3
, bi = 1 + eai −φ1, and ci = 1 + eai .

In(Φ) =
1

n




n∑

i=1

1

φ1bi

n∑

i=1

− eai

φ3bici

n∑

i=1

ai e
ai

φ3bici
n∑

i=1

φ1e2ai

φ2
3bic2

i

n∑

i=1

−φ1ai e
2ai

φ2
3bic2

i
n∑

i=1

φ1a
2
i e2ai

φ2
3bic2

i




Asymptotic distribution of the three parameters in the logistic growth
model:

√
n(Φ̂MLE − Φ)→d N3

(
0, {nIn(Φ)}−1

)

Back
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MLE: Nelder-Mead

Derivative-free minimization algorithm that can be used to
estimate parameters from the negative log-likelihood

Estimates n parameters by forming an n-dimensional simplex
using n + 1 points

Does not implicitly yield variance-covariance estimates of the
parameters, though they can be estimated by the diagonal of
the inverse of the Hessian matrix

Default optimization algorithm in the optim function in R

Back
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MLE: BFGS Box-constrained

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm

Quasi-Newton method that uses function values and gradients
to build up a picture of the surface to be optimized

Can be modified to incorporate box constraints on parameter
estimates, known as L-BFGS-B algorithm

Can forcibly constrain φ̂1 ∈ (0, 1)

Must specify constraints for other parameters in the model as
well

Available in the optim function in R.

Back
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Bayesian Estimation

Seek inference on the distribution of parameter estimates,
given the data y: p(Φ|y) ∝ p(Φ)p(y|Φ)
In our application,

p(y|Φ) =
n∏

i=1

log
[
ξyi

i (1− ξi )
1−yi

]

ξi =
φ1

1 + e
−(xi −φ2)

φ3

and p(Φ) is given by the density of the prior distributions of the
parameters Φ
Can use the prior distribution of Φ to coerce parameter estimates to
adhere to their logical constraints
Parameter estimates are obtained by Markov Chain Monte Carlo
techniques using the bugs function in the R2WinBUGS package in R,
which calls WinBUGS 1.4

Back
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User input

Box-constraints in the BFGS algorithm:

0.01 ≤ φ1 ≤ 0.99

0.10 ≤ φ2 ≤ 100

0.10 ≤ φ3 ≤ 100

The prior distributions for the Bayesian simulation:

φ1 ∼ Unif(0.01, 0.99)

φ2 ∼ Unif(0.1, 20)

φ3 ∼ Unif(0.1, 7)

λ ∼ standard logistic (corresponds to a uniform distribution
for φ1)

Back
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Example of unstable MLEs

Point estimates and 95% confidence intervals/credible sets for one simulation
Model (1) λ̂ φ̂1 φ̂2 φ̂3
NLS - - 0.99 (0.56, 1.41) 8.89 (5.16, 12.62) 3.45 (1.54, 5.36)
NELDER-MEAD - - 0.93 (0.61, 1.24) 8.39 (5.41, 11.36) 3.04 (1.59, 4.49)
L-BFGS-S - - 0.93 (0.61, 1.24) 8.39 (5.41, 11.36) 3.04 (1.59, 4.49)
BAYES - - 0.89 (0.70, 0.98) 7.99 (6.07, 9.29) 2.94 (1.98, 4.07)
Model (2)
NLS 4.29 (-27.31, 35.89) 0.99 (0.00, 1.00) 8.89 (5.16, 12.62) 3.45 (1.54, 5.36)
NELDER-MEAD 2.54 (-2.10, 7.19) 0.93 (0.11, 1.00) 8.39 (5.42, 11.35) 3.04 (1.60, 4.48)
BAYES 2.05 (0.84, 4.78) 0.89 (0.70, 0.99) 7.98 (6.14, 9.50) 2.96 (2.00, 4.08)

Back to simulation results
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Results from Analysis of 2003 Kenya DHS
λ̂ φ̂1 φ̂2 φ̂3

Model 1, DPT1
NLS - 0.8723 (0.8629,0.8817) 1.7666 (1.6356,1.8975) 0.5445 (0.4236,0.6654)
NELDER-MEAD - 0.8725 (0.8632,0.8819) 1.8109 (1.6320,1.9897) 0.5337 (0.3842,0.6832)
L-BFGS-S - 0.8725 (0.8632,0.8819) 1.8111 (1.6323,1.9900) 0.5338 (0.3843,0.6832)
BAYES - 0.8730 (0.8633,0.8820) 1.8125 (1.6389,2.0040) 0.5518 (0.4132,0.7304)

Model 2, DPT1
NLS 1.9212 (1.8370,2.0054) 0.8723 (0.8626,0.8814) 1.7666 (1.6356,1.8975) 0.5445 (0.4236,0.6654)
NELDER-MEAD 1.9233 (1.8393,2.0072) 0.8725 (0.8629,0.8816) 1.8114 (1.6325,1.9904) 0.5339 (0.3844,0.6835)
BAYES 1.9270 (1.8380,2.0055) 0.8729 (0.8627,0.8814) 1.8150 (1.6425,2.0030) 0.5531 (0.4159,0.7330)

Model 1, DPT2
NLS - 0.8068 (0.7958,0.8178) 2.8911 (2.7152,3.0670) 0.6086 (0.4497,0.7675)
NELDER-MEAD - 0.8060 (0.7949,0.8172) 2.8971 (2.6913,3.1028) 0.5019 (0.3543,0.6494)
L-BFGS-S - 0.8060 (0.7949,0.8172) 2.8974 (2.6916,3.1031) 0.5016 (0.3542,0.6491)
BAYES - 0.8060 (0.7947,0.8172) 2.9080 (2.6969,3.1416) 0.5200 (0.3877,0.6947)

Model 2, DPT2
NLS 1.4292 (1.3587,1.4998) 0.8068 (0.7955,0.8175) 2.8911 (2.7152,3.0670) 0.6086 (0.4497,0.7675)
NELDER-MEAD 1.4244 (1.3531,1.4958) 0.8060 (0.7946,0.8169) 2.8980 (2.6921,3.1038) 0.5019 (0.3543,0.6496)
BAYES 1.4260 (1.3560,1.5010) 0.8063 (0.7951,0.8178) 2.9125 (2.7125,3.1360) 0.5206 (0.3916,0.7125)

Model 1, DPT3
NLS - 0.7089 (0.6961,0.7218) 4.3102 (4.0079,4.6125) 1.0150 (0.7544,1.2755)
NELDER-MEAD - 0.7072 (0.6939,0.7205) 4.3106 (3.9952,4.6260) 0.8017 (0.5880,1.0154)
L-BFGS-S - 0.7072 (0.6939,0.7205) 4.3115 (3.9960,4.6270) 0.8018 (0.5881,1.0155)
BAYES - 0.7077 (0.6942,0.7198) 4.3250 (4.0289,4.6350) 0.8218 (0.6291,1.0640)

Model 2, DPT3
NLS 0.8901 (0.8278,0.9525) 0.7089 (0.6959,0.7216) 4.3102 (4.0079,4.6125) 1.0150 (0.7544,1.2755)
NELDER-MEAD 0.8819 (0.8177,0.9461) 0.7072 (0.6938,0.7203) 4.3120 (3.9965,4.6275) 0.8016 (0.5880,1.0153)
BAYES 0.8839 (0.8191,0.9458) 0.7076 (0.6940,0.7203) 4.3230 (4.0150,4.6485) 0.8189 (0.6346,1.0545)
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Extra Material

Accommodate effects of other covariates

Covariates can be easily included in the model to affect the
asymptote, inflection point, or slope. For example, if rural areas
are thought to have a lower probability of vaccination than urban,
then we could model the probability of vaccination as

f (x) =
φ1 + γxrural

1 + exp[−(xage − φ2)/φ3]

where xrural is an indicator and the parameter γ represents the
increase or the decrease in the vaccination coverage for rural areas
compared to urban.
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Extra Material

Comparison of logistic growth curve to survival analysis
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