

Association between exposure to organophosphates and carbamates and refractive error (myopia and astigmatism): NHANES 1999-2004

> October 29, 2012 APHA 140th Annual Meeting and Exposition

Yutaka Aoki, PhD, MS, MHS, ME Morgan State University School of Community Health and Policy

Organophosphates (OPs) & Vision

- "Saku disease"
 - Myopia and astigmatisms among Japanese adults and children in rural area in 1950-60s
 - Some experimental and epidemiological investigations
 - Organophosphates suspected causal agent
- Rediscovered in early 1990s by US EPA
- No recent epidemiological investigations
- · Increased use of biomarkers of OP exposure

Presenter Disclosures

Yutaka Aoki

The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months: No relationships to disclose.

Acknowledgments

The project described was supported by Grant Number G11HD038439 from the Eunice Kennedy Shriver National Institute of Child Health & Human Development. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Eunice Kennedy Shriver National Institute of Child Health & Human Development or the National Institutes of Health.

2 & 3

Organophosphates & Carbamates

- · Inhibit neuronal cholinesterase
- Insecticides
- Human exposure through:
 - Diet
 - Residue from agricultural use
 - Indoor use
 - · Chlorpyrifos & diazinon have been phased out

6

Myopia & Astigmatism

• Myopia (nearsightedness)

- Prevalence risen in the U.S. (Vitale et al. 2009)
 - Causal/risk factors
 - Near work
 - High SES
- Genetic
- Astigmatism
 - Causal/risk factors
 Less clear than myopia
 - Genetic
- Often occur together
 - Astigmatism also co-occurs with hyperopia

Study Aim & Design

Aim

 To investigate association between urinary biomarkers of exposure to cholinesterase inhibitors and refractive error (myopia and astigmatisms)

Design

- Cross-sectional survey National Health and Nutrition Examination Survey (NHANES) 1999-2004
- 3 survey period: 99-00, 01-02, 03-04
- Nationally representative sample of non-institutionalized individuals
- Vision data for age >= 12 (Vitale et al. 2008)
- Urinary metabolite data for age >= 6 (sub-sample)
 Not all measured for 3 survey periods, some missing measurements

Variables

- · Outcome-based on objective refraction
 - <u>Myopia</u>, hyperopia (vs. neither)
 ≤ –1 diopter, ≥ 3 diopter (vs. in-betw
 - Astigmatism
- Unspecific metabolites
 Six phosphate metabolit

 - Specific metabolites
 - Include metabolites of malathion, chlorpyrifos, & parathion
- Confounders/covariates
 - Log urine creatinine, fasting time, family income, measure of walking difficulty (correlate of time spent 8
 - indoor/near work)

Metabolite			
	1999-2000 20	001-2002 2	003-2004
Dimethylphosphate			
Dimethylthiophosphate			
Dimethyldithiophosphate			
Diethylphosphate			
Diethylthiophosphate			
Diethyldithiophosphate			91.8
Dimethyl alkylphosphate			
Diethyl alkylphosphate			
Total dialkyl phosphate			
Chlorpyrifos metabolite			
Carbofuran metabolite		99.7	99.7
Coumaphos metabolite		96.8	
Diazinon metabolite		95.6	
Malathion metabolite			
Parathion metabolite			
Propoxur	98.8	99.7	100.0
Acephate	00.0	00.1	97.9
Methamidaphos			99.7
Dimethoate			99.2

Unspecific OP Metabolites

		Parent Organophosphates																									
Unspecific Metabolites	Azinphos methvl	Chlorethoxvphos	Chlorovritos	Chlorpvritos methy	Coumaphos	Dichlorvos (DDVP)	Diazinoń	Dicrotophos	Dimethoate	Disulfoton	Ethion	Fenitrothion	Fenthion	Isazaphos-methyl	Malathion	Methidathion	Methyl parathion	Naled	Oxydemeton-methy	Parathion	Phorate	Phosmet	Pirimiphos-methy	. Sulfotepp	Temephos	Terbufos	Tetrachlowinphos
Dimethyl-phosphate	•			•		•		•	•			•	•	•	•	•	•	•	•			•	•		•		•
Dimethyl-thiophosphate	•			•					•			•	•	•	•	•	•		•			•	•		•		
Dimethyl-dithiophosphate	•								•						•	•						•					
Diethyl-phosphate		•	•		•		•			•	•									•	•			•		•	
Diethyl-thiophosphate		•	•		•		•			•	•									•	•			•		•	
Diethyl-dithiophosphate										•	•										•					•	
Adapted from http://www.cdc.gov/exposurereport/pdf/FourthReport.pdf 9																											

Urinary metabolite Summary

				metabolite
		Below		ation, nmol/L
		detection	Geometric	Interquartile
Metabolite	Ν	limit (%)	Mean	range
Dimethylphosphate	5171	(51.7)	8.9	2.8-27.0
Dimethylthiophosphate	5171	(37.2)	11.3	2.0-44.5
Dimethyldithiophosphate	5140	(62.1)	1.5	0.4-5.6
Diethylphosphate	5138	(46.1)	4.3	0.9-22.9
Diethylthiophosphate	5117	(43.2)	1.7	0.7-4.9
Diethyldithiophosphate	3240	(66.8)	0.6	0.4-0.4
Dimethyl alkylphosphate	5138	(21.8)	31.9	7.8-89.3
Diethyl alkylphosphate	5080	(25.5)	9.2	1.6-28.8
Total dialkyl phosphate	5046	(9.2)	52.1	18.3-130.9
Carbofuran metabolite	1447	(89.1)	1.0	0.9-1.7
Chlorpyrifos metabolite	3271	(19.4)	8.3	3.6-21.7
Diazinon metabolite	1334	(68.5)	4.3	3.2-3.9
Malathion metabolite	1404	(47.4)	0.8	0.3-2.2
Parathion metabolite	3245	(64.7)	2.6	0.5-7.9
Interguartile range a	~ 10-	fold		
Positively correlated	d with	i each o	ther	

Statistical Analysis

- · Stata 12 svy suite for complex survey data - Proper weighting & variance estimation
- Myopia analysis
 - Multinomial regression
 - 3 outcome status: myopia, hyperopia, neither (ref)
- Astigmatism analysis
 - Logistic regression: astigmatism vs. normal
 - (Linear regression: spherical error)

Prevalence by age

		Age gro	roups			
Sample with	12-19	20-39	40-59	>= 60		
<u>Vision data (entire sample)</u>						
Муоріа	32.3%	36.2%	37.6%	20.7%		
Hyperopia	1.3%	1.0%	2.4%	9.9%		
Astigmatism	23.3%	33.0%	41.2%	66.0%		
Myopia Hyperopia	32.4%	36.2% 0.7%	37.0% 2.8%	20.9% 6.1%		
Astigmatism	21.6%	34.5%	41.6%	67.8%		
<u> Vision + malathion (1999-2000)</u>						
Myopia	30.0%	32.7%	36.0%	100.0%*		
Hyperopia	1.9%	1.7%	3.3%			
Astigmatism	23.1%	32.6%	38.7%	100.0%*		
* Only one individual of age >=60						

Myopia Results: Unadjusted and adjusted associations

- Unadjusted models
- Each w/ one metabolite as single predictor
- Partially-adjusted models

 Each w/ one metabolite and all other covariates
- · Fully-adjusted model
 - All metabolites and covariate in a single model

14

As	Fully- adjusted for covariates**								
	U	nadjuste	ed		ly-adjus variates		& meta (N = 1		
Metabolite	N	OR*	p	N	OR	p	OR	p	
Dimethylphosphate	5171	1.11	0.17	5075	1.09	0.27	0.89	0.56	
Dimethylthiophosphate	5171	1.08	0.11	5075	1.05	0.33	0.81	0.29	
Dimethyldithiophosphate	5140	1.14	0.02	5045	1.10	0.07	1.10	0.30	
Diethylphosphate	5138	1.00	0.93	5042	0.99	0.88	1.52	0.41	
Diethylthiophosphate	5117	1.06	0.37	5023	1.02	0.79	0.79	0.27	
Diethyldithiophosphate	3240	1.05	0.70	3160	1.03	0.78			
Dimethyl alkylphosphate	5138	1.11	0.11	5043	1.10	0.18	0.87	0.84	
Diethyl alkylphosphate	5080	1.03	0.70	4986	1.00	0.95	0.55	0.34	
Total dialkyl phosphate	5046	1.13	0.10	4953	1.13	0.14	1.46	0.56	
Carbofuran metabolite	1447	1.02	0.95	1405	1.03	0.91	1.13	0.65	
Chlorpyrifos metabolite	3271	0.87	0.24	3187	0.95	0.63	0.66	0.20	
Diazinon metabolite	1334	1.15	0.52	1297	1.10	0.64	1.21	0.42	
Malathion metabolite	1404	1.16	0.25	1367	1.21	0.12			
Parathion metabolite	3245	1.02	0.84	3162	1.03	0.73	1.09	0.64	
* Odds ratio for per 10-fold increase in urine metabolite concentration									
** Age-sex strata, race, fasting time, family income, log creatinine, & walking difficulty									

	Ful adjust covari & meta	ed for ates** bolites								
	<u>U</u>	nadjust	ed	<u>co</u>	variate	<u>s**</u>	<u>(N = 1220)</u>			
Metabolite		OR*			OR		OR			
Dimethylphosphate	5171	0.96	0.50	5075	1.01	0.93	0.79	0.14		
Dimethylthiophosphate	5171	1.06	0.27	5075	1.11	0.04	1.16	0.16		
Dimethyldithiophosphate	5140	1.17	800.0	5045	1.19	0.002	1.33	0.06		
Diethylphosphate	5138	0.92	0.10	5042	0.93	0.21	0.79	0.70		
Diethylthiophosphate	5117	1.02	0.85	5023	1.06	0.51	0.84	0.53		
Diethyldithiophosphate	3240	0.98	0.87	3160	0.95	0.70	1.24	0.25		
Dimethyl alkylphosphate	5138	1.06	0.43	5043	1.13	0.11	0.63	0.21		
Diethyl alkylphosphate	5080	0.90	0.20	4986	0.94	0.42	1.36	0.72		
Total dialkyl phosphate	5046	1.03	0.75	4953	1.11	0.22	1.08	0.82		
Carbofuran metabolite	1447	1.17	0.72	1405	1.19	0.65	1.28	0.60		
Chlorpyrifos metabolite	3271	0.81	0.001	3187	0.89	0.14	0.57	0.01		
Diazinon metabolite	1334	0.86	0.52	1297	0.78	0.31	0.85	0.55		
Malathion metabolite	1404	1.33	0.01	1367	1.44	0.003	1.45	0.01		
Parathion metabolite	3245	0.81	0.01	3162	0.89	0.17	0.94	0.81		
	** Age-sex strata, race, fasting time, family income, log creatinine, & walking difficulty									

Astigmatism Results: Parsimonious model

	Reduce	d Model	Parsimoni	ous Model					
Metabolite	OR*	р	OR	p					
Diethyldithiophosphate	1.20	0.30	-	-					
Chlorpyrifos	0.62	0.03	0.64	0.04					
Malathion	1.27	0.04	1.28	0.04					
* Odds ratio for per 10-fold increase in urine metabolite concentration									

Covariates adjusted: age-sex strata, race, fasting time, family income, and walking difficulty

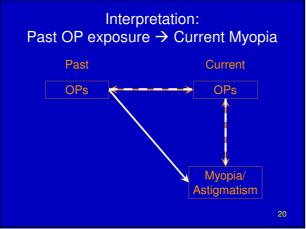
- Independent association for chlorpyrifos & malathion in the <u>opposite</u> direction
- Similar results from linear regression of spherical error (continuous measure of astigmatisms)

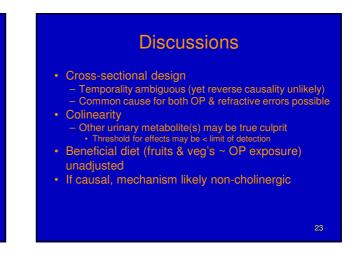
18

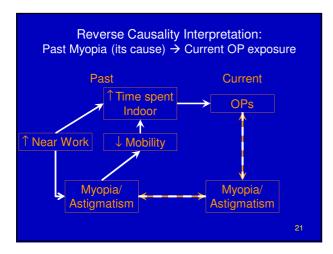
Myopia Results: Parsimonious model

	Reduce	Reduced Model		Ious Model
Metabolite	OR*	p	OR	p
Dimethylthiophosphate	0.95	0.50		
Dimethyldithiophosphate	1.15	0.15		
Chlorpyrifos	0.58	0.002	0.58	0.001
Malathion	1.52	0.001	1.54	0.001
Parathion	0.91	0.56	-	-

* Odds ratio for per 10-fold increase in urine metabolite concentration Covariates adjusted: age-sex strata, race, fasting time, log creatinine, family income, and walking difficulty


- Association stronger w/ adjustment for each other
- Independent association for chlorpyrifos & malathion in the <u>opposite</u> direction
- Animal experiment report on suppression of myopia by 16 chlorpyrifos (Geller et al. 1998)


Observed Associations


- Myopia & Astigmatism
 - Higher prevalence with higher urinary malathion metabolite
 - Lower prevalence with higher urinary chlorpyrifos metabolite

19

APHA 2012 3127.0: Environmental Epidemiology

Conclusion

- Malathion urinary metabolite positively associated with current myopia & astigmatisms
- Chlorpyrifos negatively associated with them
 Concordance with experiment evidence
- · Confirmation with longitudinal study needed
- Add evidence for adverse effects on low level exposure to organophosphates
- Caution for additional OP uses, e.g. - Indoor use for bed bug control petitioned for malathion

24

Counter argument for reverse causality

- Negative association w/ chlorpyrifos unexplainable
- Indoor OP exposure < dietary OP exposure
 - No registered indoor use of malathion
- Malathion-myopia association persists after adjustment for walking difficulty

22

References

- Geller AM, Abdel-Rahman AA, Peiffer RL, Abou-Donia MB, Boyes WK. The organophosphate pesticide chlorpyrifos affects form deprivation myopia. Invest Ophthalmol Vis Sci. 1998 Jun;39(7):1290-4. Vitale S, Ellwein L, Cotch MF, Ferris FL 3rd, Sperduto
- Vitale S, Ellwein L, Cotch MF, Ferris FL 3rd, Sperduto R. Prevalence of refractive error in the United States, 1999-2004. Arch Ophthalmol. 2008 Aug;126(8):1111-9.
- Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971-1972 and 1999-2004. Arch Ophthalmol. 2009 Dec;127(12):1632-9. 25

Abstract 261669 Organophosphates & Vision