Air Emissions Recycling Flow Chart

Captured mixed emissions: CO₂, HAP, Particulate

fractional condensation, sedimentation

CO₂ & Traces <------Liquid HAP<------Metals & Particulates co ~ 0.007% NOx ~ 400 ppm formaldehyde, benzene trace corrosive Stored CO₂ metals non-corrosive (> 300K TPY) land fill & fuel > 30 TPY civil projects chemical other scavengers scavengers

Recycled public waste water aseptics

Purification and distribution to:

- * Compressed CO₂ markets
- * Year-round hydroponic agriculture
- * Bio-tech innovations

AER's strategic components

- A. Establishing market demands: Determine recurring market demand for AER and product derivatives
- 1) CO2 source for compressed air distributers
- 2) CO2 source for hydroponic agriculture systems
- 3) CO₂ source for glucose-derivative products

B. Marshaling feasible technology:

- Stack channeling & burner efficiencies, storage, fractionation, purification, distribution
- 2) Regulating CO₂ concentrations in growth systems
- 3) Linkage & draw-down of public waste water systems
- 4) Biotech reactor synthesis & combination
- 4.1 Pharmaceuticals
- 4.2 Complex polysaccharides--fibers.
- 4.3 Algae fibers & derivatives
- C. Promoting commerce: Engage local public and private capital interests

D. Basic research:

 AER's 2012 benefits analysis has determined 120 Kw are required to energize 1 mole glucose (44 gm).

- 2) Current grid costs are \$0.14 / Kw Hr. The grid cost for one mole--44 gm--glucose = \$4.66. The grid cost for one pound glucose (~10 mole) = \$48.00.
- AER's theory predicts a 2W solar device (1 Red LED + 1 Blue LED, i.e. 120 Kw / hr) energizes
 0.14 mole glucose / hr (~ one pound glucose / day).
- 4) Solar panels costing < \$ 2.40 / Watt = \$ 0.66 / Kw during the 1st Kwh, \$ 0.066 / Kw by the 10th Kwh and < \$ 0.0066 / Kw after the 100th Kw hr. The solar energy cost to energize a pound of glucose is inconsequential.</p>
- 5) Feasible CO₂ end products include pharmaceutical grade 5% glucose drip bags which wholesale for < \$ 0.45 / bag. One pound glucose makes about eighteen 500 ml 5% glucose drip bags.
- 6) Hydroponic CO₂ concentrations must range from 400 1200 ppm (0.03% 0.09 %.)
- 6.i) 1.5 m³ CO₂ / sec fixation / turnover in an 1,800 m³ grow box defines a hydroponic system with a 0.09% CO₂ concentration.
- 6.ii) $1.5 \text{ m}^3 \text{ CO}_2 / \text{sec} = 5,560 \text{ m}^3 \text{ CO}_2 / \text{hr} = 10 \text{ TPH},$ (an emission source ~ 250 TPD CO₂).
- Waupaca's emission sources include a 250 TPD facility and another 375 TPD facility.

 These sources' CO₂ emission could be reduced 80% by installation of TKEnergizerTM burners.

E. Benefits:

Implementing AER would be cost-effective for operators and Waupaca County's public health (APPENDIX B Tables 1 - 5.2).

Copyright 2012 Philip Nolan, waupacacpr@gmail.com