Amber Hogan Mitchell, DrPH, MPH, CPH

LOW RISK IS THE NEW HIGH RISK: Implications of National Policy on Occupational Exposure to Blood and Body Fluids in US Hospitals

Presenter Disclosures

The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

No relationships to disclose.

Presentation Objectives

- Public Health Significance
- Study Aims
- Methods
- Results
- Discussion

Public Health Significance

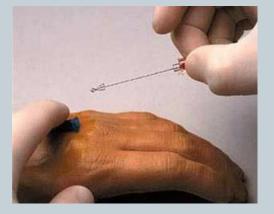
BACKGROUND

Population Risk

- 17 million healthcare workers in 790,000 facilities
- Healthcare is sector with the largest growth
 - +2.4% per year in healthcare
 - -1.1% per year in manufacturing
- Changing reimbursement, Affordable Care Act
 Pressure to fill beds
- 35 million patient discharges per year
 185,000 HIV positive with co-morbidities (HCV, TB)
 - 46 per 1,000 MRSA positive

Occupational Infection / Illness Risk

 Modes of Transmission • Infectious Disease × Contact, Aerosols • Bloodborne Pathogens × Needlesticks, sharps injuries Infectious & Bloodborne × Splashes, splatters



Hierarchy of Controls

Modes of Prevention

• Administrative Controls, National Policy

- × Standard Precautions (1988)
- × Needlestick Safety and Prevention Act (2000)
- × OSHA Bloodborne Pathogens Standard (1993, 2001)
- Engineering Controls
 - × Safety-engineered sharps
- Personal Protective Equipment (PPE)
 - × Respirators, masks, goggles, gowns

Reliance on PPE: Current Upending of the Hierarchy

- Emerging Infectious Diseases, like Ebola Virus
- Reliance on PPE availability & <u>use</u>
- Compliance with PPE use, not well studied
- Risk Gap
 - Patient arrives to ED feeling "unwell" \rightarrow gloves?
 - History, testing, diagnosis → gloves
 - Suspected or confirmed case → PPE beyond gloves indicated

Summary

- Healthcare largest work sector
- New pressures for cost containment, rushed care
- Occupational risk associated with infection, disease
- Limited published information on occupational infection
- Previous focus from national policy on engineering controls, <u>not</u> PPE
- Current focus from national policy on PPE, <u>not</u> engineering controls

Research

Study Aims

 Examine impact of national policy on mucotaneous splash and splatter incidents (MSSIs) for differences between:

- •Hospital risk area
- •PPE use
- •PPE type

Methods

Data

- Exposure Prevention Information Network (EPINet)
 - University of Virginia International Healthcare Worker Safety Center
- 68 U.S. Hospitals
- 32,000+ Incident Reports
 - Blood and Body Fluid Form

(Mucotaneous Splash or Splatter Incident MSSI)

- 1995-2007
- Voluntary, self-report
- Pooled incident data, no hospital demographics

Dependent Variables

- 1. Any PPE Use
 - Any use of PPE for face for MSSI only

2. Appropriate PPE Use

- Incident-type of PPE and report of specific MSSI type (eyes, nose, mouth)
 - × If nose incident, employee was wearing mask or faceshield

Independent Variables

Hospital Area

- High = labor/delivery, ED, OR, patient room
- Low = outside patient room, lab, autopsy, clinic
- A priori from literature

• Time Period

- o Pre-NSPA (1995-1999)
- NSPA (2000-2002) Reference Period
- Post-NSPA (2003-2007)

Results: Hypothesis 1

Healthcare workers that report an MSSI are wearing *any* PPE more in high risk hospital areas than in low risk hospital areas

The Frequency of Eyes, Nose, Mouth MSSI by Hospital Area during the Study Period 1995-2007

	Low Risk	High Risk	Total
Eyes	1,316	2,680	3,996 (79%)
Nose	113	197	310 (6%)
Mouth	266	466	732 (15%)
Total	1,695 (34%)	3,343 (66%)	5,038 (100%)

The Frequency of PPE Use by Hospital Area during the Study Period 1995-2007

	Low Risk	High Risk	Total
Eyeglasses	278	593	871 (39%)
Side Shield	6	30	36 (2%)
Goggles	65	163	228 (10%)
Faceshield	46	190	236 (10%)
Mask	178	707	885 (39%)
Total	573 (25%)	1,683 (75%)	2,256 (100%)

Logistic Regression of Each PPE Type by Hospital Area for the Study Period 1995-2007

	OR	95% CI	
ANY PPE	(1.53)	(1.35, 1.72)	
Eyeglasses	1.03	(0.88, 1.20)	
Sideshield	1.97	(1.78, 2.57)	
Goggles	0.95	(0.71, 1.29)	
Faceshield	1.51	(1.78, 2.57)	
Mask	(2.14)	(1.63, 1.82)	

*Low Risk Hospital Area is the Referent Group

Hypothesis 1: TRUE

- Eye incidents are the most frequent; twice as frequent in high risk areas
- Eyeglasses & masks are most frequently worn PPE

Higher odds in high risk areas that: Any PPE is worn

Mask & eyeglasses with sideshields are worn

Results: Hypothesis 2

Healthcare workers who experience MSSI wear *appropriate* PPE more in high risk hospital areas than in low risk hospital areas

Frequency of MSSI Type by Appropriateness of PPE Use for the Study Period 1995-2007

	$c \rightarrow$					\sim
	Eyeglasses	Side Shield	Goggles	Faceshield	Mask	ALL
Eyes: Low Risk	149	5	27	28		209 (22%)
High Risk	360	23	101	116	N/A	579 (65%)
Nose: Low Risk				5	9	14 (2%)
High Risk	N/A	N/A	N/A	9	15	24 (3%)
Mouth: Low Risk				4	6	10 (2%)
High Risk	N/A	N/A	N/A	12	18	30 (3%)
	-			-		887 (100%)

Logistic Regression of MSSI by type and *Appropriate* PPE for High and Low* Risk Hospital Area

	OR	(95% CI)
Appropriate PPE	1.58	(1.40, 1.78)
Eyes	1.41	(1.18, 1.68)
Nose	0.98	(0.47, 2.14)
Mouth	1.71	(0.80, 4.00)

*Low Risk Hospital Area is the Referent Group

Hypothesis 2: TRUE

• Higher odds that:

Appropriate PPE is worn in high risk areas
Mask is appropriately worn in high risk areas

• Appropriate PPE was worn during the NSPA Time Period (not before or after)

Discussion

Scientific Curiosity

Expected

- PPE worn more frequently in high risk areas
- Masks worn most frequently in high risk areas

Not Expected

- No difference between MSSI and PCSI after National Policy
- Eyeglasses worn with greater odds in high risk areas, eyeglasses not however considered PPE
- PPE less appropriately worn in low risk areas

Comparisons to Published Literature & Policy

Support

- Eyeglasses worn most frequently in OR
- PPE compliance is poor
- MSSIs occurring because of poor PPE use

- 111

Refute

- Low risk hospital areas are NOT lower occupational risk
- Needlesticks did NOT decline compared to MSSIs
- MSSIs are NOT occurring infrequently

Contributions to Science & Policy

Implications

- Attention to low risk hospital areas
- Attention to PPE availability, use, and appropriate selection
- Attention to PPE compliance!
- Provides analysis to evaluate implications of national policy

Future Research

- More information on hospital demographics
- Availability of new engineering controls
- Role of other PPE, including gowns, gloves
- Role of other protective apparel, innovations

Thank You, Healthcare Workers

Without you, there would be no healthcare.

Stay safe, be well.

Contact Me

Amber.Mitchell@internationalsafetycenter.org

ambermitchell@luckymail.com

713-816-0013

Back Up Slides

Analysis

Descriptive

- Comparison of counts, ratios
- Establish sample size/units of measure

• Preliminary

- o *t*-test, difference of means (H1)
- o Odds Ratios and 95% Confidence Intervals (H2,H3)

Formal Test

- o Linear Regression (H1)
- o Logistic Regression (H2, H3)

Comparisons of this Research to Others

Strengths

- Largest Dataset
- Largest Timeframe
- Exhaustive Analysis
- Generalizability across Hospital Areas
- Quantifies Exposure Risk

Limitations

- Inability to calculate rates
- Inability to link incident to hospital
- Healthy "Hospital" Effect
- Recall Bias
- Reporting Bias
- Incidents do not imply infection