Impact of work shift starting time on sleep patterns and alertness prior to injury in the People’s Republic of China

David A. Lombardi, Ph.D.1,2
Kezhi Jin, Ph.D.3
Céline Vetter, Ph.D.4
Theodore K. Courtney, M.S.1,2
Simon Folkard, D.Sc.5,6
Anna Arlinghaus, Ph.D.1,2,7
Youxin Liang, MD, Ph.D.3
Melissa J. Perry, Sc.D.8

1 Center for Injury Epidemiology, Liberty Mutual Research Institute for Safety, Hopkinton, USA
2 Department of Environmental Health, Harvard School of Public Health, Boston, USA
3 School of Public Health, Fudan University, Shanghai, P.R. China
4 Center of Chronobiology, Institute of Medical Psychology, University of Munich, Germany
5 Institut de Psychologie, Université Paris Descartes, France, 6 Department of Psychology, Swansea University, UK
7 Gesellschaft für Arbeits-, Wirtschafts- und Organisationspsychologische Forschung (GAWO) e.V., Oldenburg, Germany
8 George Washington University School of Public Health and Health Services, Washington, DC, USA

Presenter Disclosures

David A. Lombardi, PhD

(1) The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months:

‘No relationships to disclose’

Mission:
To advance scientific knowledge in areas that can reduce injuries and ensure disability.
Study Objectives

- Early work shift start time and night shifts associated with reduced sleep duration, poorer sleep quality and increased fatigue (Härmä, 1993; Folkard & Lombardi., 2005; Willamson et al., 2011; Vetter et al., 2012, Judah et al., 2013)
- This study investigates the impact of work shift starting time on sleep duration, sleep quality, and alertness/sleepiness among:
 - A large epidemiological field study of hospitalized adults with severe work-related hand injury in the People’s Republic of China (PRC) (Jin, Lombardi et al., 2012; Lombardi, Jin et al., 2014)

Background – Injury in the PRC

- Recent study of 3479 frontline Chinese workers in 60 factories (2008–2009) reported highest risk factors for injury were: working >55 hours per week (OR = 1.64, 95% CI: 1.21–2.22) and high mental work stress (Yu et al., 2012)

Epidemiology of Hand Injuries in PRC
- accounts for ~54% of emergency dept. visits and 43% of hospital orthopedic visits

Work-related Trauma in PRC
- 43–90% of all hand injury visits work-related
- average hospital duration: 12–18 days
- and disability

Study Population*

- Workers admitted for treatment of sudden-onset, traumatic injury to the upper-extremity
 - 2 ½ year period from 11 hospitals in 3 industrial cities in the PRC, Ningbo, Wuxi and Liuzhou
 - Injuries: laceration, crush, avulsion, puncture, fracture, contusion, amputation & dislocation to fingers, hand & wrist
 - Exclusions: sprain, strain, needle-stick injuries, falls, burns

Interview Procedure

- Study approved by IRC of LMRIS, IRB of HSPH, FSPH
- 730 hospitalized workers screened by physicians and informed consent obtained
- 703 (96.4%) completed a face-to-face interview within 4 days of injury in a clinic using structured questionnaire in Chinese (cross-translated) by trained interviewers

Methods

- For this analysis workers reported:
 - Injury date and time
 - Timing of work schedules and rest breaks
 - Sleep start and wake time (time before injury and two previous days)
 - Sleep quality (time before injury and two previous days); scale 1-10
 - Alertness/sleepiness (time of injury and two previous days) using the Karolinska Sleepiness Scale (1-9) (Akerstedt et al., 1990)

Methods – Statistical Analysis

- **ANCOVA Model**
 - Dependent variables:
 - Sleep duration, Sleep quality
 - Alertness / sleepiness at the time of injury
 - Main effect: Work shift starting time (8 x 3h increments across the 24h day)
 - Covariates: age, gender, daily shift duration, workdays per week, day of injury and interactions, sleep quality, alertness / sleepiness
 - Test of interaction: Work shift starting time x gender
Demographics, Work Hours and Sleep

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Gender (N=703)</th>
<th>Occupation (top 3)</th>
<th>95% Confidence Interval</th>
<th>N</th>
<th>Mean</th>
<th>Std. Error</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender</td>
<td>Male 527 (75.0)</td>
<td>Machinery mfg. 149 (25.0)</td>
<td></td>
<td>703</td>
<td>31.8</td>
<td>0.39</td>
<td>31.0</td>
<td>32.6</td>
</tr>
<tr>
<td></td>
<td>Female 176 (25.0)</td>
<td>Fabricated metal mfg. 110 (18.5)</td>
<td></td>
<td>703</td>
<td>9.5</td>
<td>0.08</td>
<td>9.3</td>
<td>9.7</td>
</tr>
<tr>
<td>Age</td>
<td>703</td>
<td>6.4</td>
<td>0.04</td>
<td>6.3</td>
<td>6.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily shift duration (hrs.)</td>
<td>703</td>
<td>55.7</td>
<td>0.56</td>
<td>54.6</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Days worked/week</td>
<td>703</td>
<td>0.8</td>
<td>0.04</td>
<td>0.8</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep duration (hrs., time before injury)</td>
<td>700</td>
<td>8.5</td>
<td>0.07</td>
<td>8.3</td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shift and Sleep Times

<table>
<thead>
<tr>
<th>24-hour clock, local time</th>
<th>Shift Starting Time</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00 – 02:59</td>
<td>15</td>
<td>2.1</td>
<td>65.2</td>
</tr>
<tr>
<td>03:00 – 05:59</td>
<td>16</td>
<td>2.3</td>
<td>42.9</td>
</tr>
<tr>
<td>06:00 – 08:59</td>
<td>541</td>
<td>77.3</td>
<td>24</td>
</tr>
<tr>
<td>09:00 – 11:59</td>
<td>18</td>
<td>2.6</td>
<td>36.4</td>
</tr>
<tr>
<td>12:00 – 14:59</td>
<td>17</td>
<td>2.4</td>
<td>36.3</td>
</tr>
<tr>
<td>15:00 – 17:59</td>
<td>41</td>
<td>5.9</td>
<td>1.0</td>
</tr>
<tr>
<td>18:00 – 20:59</td>
<td>48</td>
<td>6.7</td>
<td>17.6</td>
</tr>
<tr>
<td>21:00 – 23:59</td>
<td>13</td>
<td>1.8</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Mean (± 95% CI) Sleep Duration (night before injury) by Work Shift Starting Time (3 h categories)
Slide 13

ANCOVA Results
Mean (±95% CI) Sleep Duration (night before injury) by Gender and Work Shift Starting Time

![Graph showing sleep duration by gender and shift start time]

Shift start time x Gender: F-value=7.23, p-value <0.0001

Slide 14

Sleep Quality (last sleep before injury) by Work Shift Starting Time (3 h categories)

- No statistically significant difference across work shift start times for sleep quality

Slide 15

Karolinska Sleepiness Scores (KSS) (at time of injury) by Work Shift Starting Time (3 h categories)

- Alertness/sleepiness based on the KSS (generally alert) did not vary significantly across shift starting times
Summary of Results

- Overall mean sleep duration shortest for workers starting shifts at "21:00-23:59" (5.6±0.8h), followed by midnight "00:00-02:59" (6.1±0.6h)
- Statistically significant interaction (p<0.05) between gender and work shift starting time on mean sleep duration:
 - Males: 5.8h at "21:00-23:59"
 - Females: 4.3h at "24:00-02:59" and "15:00-17:59"
- Sleep quality (generally quite well) and alertness / sleepiness based on the KSS (generally alert) did not vary significantly across shift starting time.

Discussion

- Self reported wake and sleep times, sleep quality, and alertness / sleepiness scores (recall bias)
- Subjects from case crossover study (within-person design), thus no controls which to compare our results
- Small sample sizes within work shift start time categories when stratified by gender

Limitations

- Short period between work injury and the follow-up interview of worker (median of four days)
- Workers hospitalized (confirmation of injury outcome)
- Heterogeneous group of occupations (external validity)

Strengths

- Consistent with findings from other countries:
 - Shortest sleep durations occur when work shifts start in early morning or late at night in the PRC
 - However, PRC workers on average in this study slept an average of 8.5h on workdays
 - Much longer than a typical US day worker who sleeps on average, 5.4h on workdays, 7.4h on free days
 - This may help to explain the higher than expected alertness / sleepiness KSS scores at the time of injury
The impact of shift curtail time on sleep duration, sleep quality, and accidents prior to injury in the People's Republic of China

David A. Lombardi, Afet O, Olusegun O. Odebiyi, C. K. Courtney, Simee Kubla, Ioana Angelica, and Mathias J. Pern

Curtis J. Dehner, Chief Medical Officer, Liberty Mutual Research Institute for Safety, 200 Federal Street, Boston, MA 02210, United States

Please contact David Lombardi at David.Lombardi@libertymutual.com for more information.