Economic Evaluation of Outbreak Responses of Pertussis, Tuberculosis and Fungal Meningitis in New River Valley, Virginia

Kaja Abbas

Assistant Professor of Infectious Diseases in Public Health <u>kaja.abbas@vt.edu</u> <u>www.KajaAbbas.com</u>

Department of Population Health Sciences, Virginia-Maryland College of Veterinary Medicine Department of Basic Sciences, Virginia Tech Carilion School of Medicine Faculty of Health Sciences, Virginia Tech

Economic Evaluation of Outbreak Responses of Pertussis, Tuberculosis and Fungal Meningitis in New River Valley, Virginia

> Kaja Abbas, PhD, MPH Nargesalsadat Dorratoltaj, MS, MPH Jennifer Samuels, BS Karina Platt, MPH Paige Bordwine, MPH Margarat O'Dell, MD, MFA Thomas Kerkering, MD Kerry Redican, PhD, MSPH, MPH

Public Health Program

Conflict of interest: None

We declare that we have no conflict of interest, and we comply with the American Public Health Association Conflict of Interest and Commercial Support Guidelines.

Learning objectives

- Identify the costs and epidemiological benefits of outbreak responses of pertussis, tuberculosis and fungal meningitis in New River Valley, Virginia.
- Evaluate the incremental cost-effectiveness ratio for each of the disease outbreak responses.
- Compare the incremental cost-effectiveness ratios to prioritize the limited resources of the local health department among different interventions.

Study objective

To conduct cost-effectiveness analysis of infectious disease interventions and assist in prioritization of limited public health resources.

New River Valley, Virginia, USA
 Infectious disease outbreaks
 Pertussis
 Tuberculosis
 Fungal meningitis

New River Valley New River Health District

Pertussis

2011 outbreak

Pertussis

Bacteria
 bordetella pertussis

Symptoms

 whooping cough
 fever

Transmissiono air-borne

Pertussis infection timeline

Vaccine DTaP vaccine Diptheria Tetanus Pertussis

Vaccines

Basic reproduction rate - *R*_o

 Average number of secondary cases
 caused by the
 primary case in a
 susceptible
 population

R_o

- Epidemic
 - R_o > 1
- Endemic
 - $\circ R_o = 1$
- Elimination $\circ R_{o} < 1$
- Eradication $\circ R_o = 0$

Effective reproductive rate R ~ R_o* (1 - interventions impact)

R and vaccination Elimination R < 1

f = fraction of population that are vaccinated
 (1 - f) = fraction of susceptible population

For herd immunity
minimum fraction/threshold (f_h) of population to be vaccinated
R = Ro (1 - f_h) < 1
f_h > 1 - (1 / R_o)
Pertussis
Herd immunity ~ (92-94)%

DTaP vaccine

Pertussis incidence - Virginia

Table 1. Pertussis Incidence in Virginia, 2007-2011

Year	Number of Cases	Rate per 100,000	Number of Outbreaks
2007	128	1.65	6
2008	198	2.55	9
2009	222	2.82	10
2010	384	4.87	10
2011	399	5.06	13

Pertussis outbreak (2011) New River Valley

72 cases

Prime impact private school vaccination rate ~ 0%

New River Health District Intervention

Vaccination & health education campaigns

Vaccine clinics
 school
 community

Economic evaluation ICER - Incremental Cost-Effectiveness Ratio

 $ICER = \frac{Cost_{new intervention} - Cost_{control}}{Effectiveness_{new intervention} - Effectiveness_{control}}$

Data sources (cost) New River Health District employee hours number of vaccines clinical hours US Census Data average salary of various positions CDC vaccine price list archive cost of vaccines

Intervention cost

Health Department Costs					
Position	<u># of</u>	Hours	Hourly Salary + Benefits	Total	
Ері	1	200	43.39	8678	
Nurse Epi	1	16	35.97	575.52	
Planner	1	24	48.71	1169.04	
Director	1	45	95.7	4306.5	
Clerical	1	26	31.07	807.82	
Nurse Manager SR.	1	10	47.6	476	
Public Health Nurse	1	12	39.38	472.56	
Public Health Nurse Senior	1	16	41.34	661.44	
Total State Personell Cost				17146.88	
Clinical Costs					
Physician	6	122	81	9882	
Physicians Assistant	1	24	41.54	996.96	
Nurse practitioner	3	74	43.97	3253.78	
Nurse	9	208	31.1	6468.80	
Nursing Assistant	1	26	11.54	300.04	
Medical Assistant	2	52	13.87	721.24	
Clerk	9	198	13	2574	
LPN	1	26	19.42	504.92	
Total Physician cost				24701.74	
Vaccine Costs					
		# of Vaccines	Individual Vaccine Cost	Total	
School Clinic		47	26.26	1234.22	
Public Clinic		40	26.26	1050.4	
Total Vaccine Clinic Cost				2284.62	
Summary					
Total State Personell				17146.88	
Total Medical Cost				24701.74	
Total Vaccine Clinic				2284.62	
Total Overall Cost				44133.24	

DALY, YLL, YLD

DALY

- **Disability Adjusted Life Year**
- YLL
 - Years of Life Lost due to premature death
- YLD (Years Lived with Disability)
 - Years of Life Lost due to Disability
 - population: (prevalence) * (disability weight)
 - individual: (years with disability) * (disability weight)

DALY = YLL + YLD

One DALY equals one lost year of healthy life.

DALY = YLL + YLD

DALY

Disability Adjusted Life Years is a measure of overall disease burden, expressed as the cumulative number of years lost due to ill-healh, disability or early death

=

DALY = YLL + YLD

DALY: Disability Adjusted Life Years YLL: Years of Life Lost due to premature death YLD: Years of Life Lost due to Disability

DALY = YLL + YLD

LE	=	Average Life Expectancy	=	78.7
MR	=	Mortality rate of pertussis worldwide	=	.001
Ι	=	Number of Confirmed Cases	=	72
DW	=	Pertussis Disability Weight	=	.137

Calculation of YLL					
	Average	# of	YL=	YLL= [YL(Adults)*MR] +	
	Age	Confirmed	# cases*(LE-	[YL(Children)*MR]	
	-	Pertussis	Avg. Age)	,	
		Cases			
Adults	36.33	29	1228.73	4.28	
Children	7.69	43	3053.43		
Calculation of YLD					
	Duration				
	of illness	YLD= I*DW*L		YLD _{Averted} = YLD _{Possible} -YLD _{Actual}	
	(years)[L]				
YLD _{Actual}	.125	1.23		1.63	
YLD _{Possible}	.29	2.86			

DALY = YLL + YLD= 4.28 + 1.63 = 5.91 DALYs

Cost of Intervention=\$44,133.24Cost of no Intervention=\$0

ICER = \$44133.24 / 5.91 DALYs

ICER = \$7,468 / DALY averted

Tuberculosis

2011 outbreak

Tuberculosis

- Bacteria
 - Mycobacterium tuberculosis

- Latent TB infection
 - ~ ¹/₃ global
 - asymptomatic
 - non-infectious

- Symptoms
 respiratory problem
- Transmissiono air-borne
- respiratory problems Active TB disease symptomatic infectious

Natural history of TB infection

Figure 3. Transmission of Tuberculosis and Progression from Latent Infection to Reactivated Disease.

Among persons who are seronegative for the human immunodeficiency virus (HIV), approximately 30 percent of heavily exposed persons will become infected. In 5 percent of persons with latent infection, active disease will develop within two years, and in an additional 5 percent, progression to active disease will occur later. The rate of progression to active disease is dramatically increased among persons who are coinfected with HIV.

- P Small 2001

Tuberculosis outbreak (2011) New River Valley

New River Valley jail

1 case

- 41 year old
- 6 month history of TB symptoms
- HIV+

admitted to hospital

- TB and HIV drug treatment
- isolation

New River Valley Regional Jail

Inmate population
 week day

880
 weekend
 930-940

New inmates
 ~ (50-60) / week

Employees • ~ 200

TBI treatment - 3HP 3 month treatmentonce a week isoniazid rifapentine

DOT

 directly observed therapy

LTBI treatment

35 inmates

- PPT+
- chest x-ray -
- HIV -
- 28 inmates
 - 3HP treatment
 - 17 completed

- 21 staff
 - PPT+
 - chest x-ray -

• HIV -

10 staff
 3HP treatment

SEIS (Susceptibles-Exposed-Infectious-Susceptibles) tuberculosis

TB transmission dynamics

SEIS epidemiological model (Susceptibles-Exposed-Infectious-Susceptibles)

Parameter	Description		
λ	Uninfected entry rate		
β	Transmission rate	Differential Equations	
R_1	Exit rate	Diricit	
τ	1/(treatment period)	Susceptibles Short Latent	dS/dt = $\lambda - \beta$ SI - R ₁ S + τ H dE _s /dt = λ_{E_s} + (p/2) β SI - f _s E _s - R ₁ E _s
λ_{E_s}	Short latent entry rate		5
$egin{array}{l} \lambda_{E_{S}} \ \lambda_{E_{L}} \ \lambda_{L} \end{array}$	Long latent entry rate	Long Latent	$dE_{L}/dt = \lambda_{E_{L}} + (p/2) \beta SI - f_{L}E_{L} - R_{1}E_{L}$
λ_L^{L}	Life time latent entry rate	Lifetime Latent	dL/dt = λ_L + (1-p) β SI - R ₁ L
R_2	1/(diagnosis delay)	Infectious	$dI/dt = f_s E_s + f_L E_L - R_1 I - R_2 I$
Р	Fraction of population that may develop active disease	Hospitalized	$dH/dt = R_2 I - \tau H$
	, , ,		
f_s	1/(short latent period)		
f_L	1/(long latent period)		

Scenario simulations

Base-case scenarioNo TB pre-screening

Intervention scenario
 TB pre-screening

Fungal Meningitis

2012 outbreak

Fungal meningitis

- Fungus
- Symptoms
 - headache
 - stiff neck
 - fatigue
- Transmissionnon-contagious

- New England compounding center
 - contaminated lots of methylprednisolone acetate
 - used in epidural spinal injections

Fungal meningitis outbreak

Health facilities

- 23 states
 - received contaminated lots
- 20 states
 - **751** cases
 - 64 deaths

- Virginia
 - 54 cases
 - 5 deaths

Fungal meningitis outbreak (2012) New River Valley 94 exposed residents

Surveillance process

Time & costs

$ICER = \frac{Cost_{new intervention} - Cost_{control}}{Effectiveness_{new intervention} - Effectiveness_{control}}$

Incremental Cost-Effectiveness Ratio

DALY = 100.52 DALYs averted Cost of Intervention = \$30,492

ICER = \$303 / DALY averted

Pertussis Tuberculosis Fungal Meningitis

Comparative analysis of different interventions

Uniform metric: ICER = \$/DALY averted

Prioritization of limited public health resources

Intervention	ICER
Pertussis	\$7,468 / DALY averted
Tuberculosis	-\$15,461/DALY averted (Cost saving)
Fungal meningitis	\$303 / DALY averted

Cost-effectiveness thresholds

 Table 15.4
 International thresholds for cost-effectiveness

Organization/group	Cost-effectiveness thresholds	Reference
Australia*	Costs per LYG < AU \$ 42,000 – 76,000 (costs per LYG < AU \$ 42,000: reimbursement likely, costs per LYG > AU \$ 76,000 reimbursement unlikely)	George et al. (2001)
The Netherlands	Costs < € 20.000 per QALY or LYG: cost-effective* Costs < € 80.000 per QALY: cost-effective**	Welte et al. (2004c); Raad voor de Volksgezondheid & Zorg (2007)
UK National Institute of Clinical Evidence (NICE)*	Costs per QALY < £ 20,000–30,000: cost-effective Costs per QALY < £ 45,000: cost-effective	Devlin and Parkin (2004); Appleby and Devlin, Parkin (2007)
US Institute of Medicine (IOM)**	Saves money and QALYs: most favorable Costs per QALY < US \$ 10,000: more favorable Costs per QALY > US \$ 10,000 and < 100.000: favorable Costs per QALY > US \$ 100,000: less favorable	Institute of Medicine (2000)
World Health Organization (WHO)**	Costs per DALY < GDP per capita: highly cost-effective Costs per DALY = 1x – 3x GDP per capita: cost-effective Costs per DALY > 3x GDP per capita: not cost-effective	WHO (2008)
International and especially US decision analysts**	Costs per QALY or LYG < US \$ 50.000: cost-effective	Grosse (2008)
US and British health economists**	Costs per LYG < US \$ 60.000: cost-effective	Newhouse (1998)

* Thresholds derived from past decisions

** Officially stated thresholds

LYG = Life year gained

QALY = Quality-adjusted life year

GDP = Gross domestic product

Acknowledgements Students Karina Platt Pertussis

Jennifer Samuels
 Tuberculosis

Narges Dorratoltaj
 Fungal meningitis

Acknowledgments Funding National Coordinating Center for Public **Health Services and Systems Research** University of Kentucky **Robert Wood Johnson Foundation** APHA conference Session organizers • Participants

Economic Evaluation of Outbreak Responses of Pertussis, Tuberculosis and Fungal Meningitis in New River Valley, Virginia

Kaja Abbas, PhD, MPH Nargesalsadat Dorratoltaj, MS, MPH Jennifer Samuels, BS Karina Platt, MPH Paige Bordwine, MPH Margarat O'Dell, MD, MFA Thomas Kerkering, MD Kerry Redican, PhD, MSPH, MPH

Contact info: Kaja Abbas <u>kaja.abbas@vt.edu</u> <u>www.KajaAbbas.com</u>

Thank you