EpiDash 1.0 - A GI Case Study

Speaker: Elizabeth Musser
Graduate Research Assistant Virginia Bioinformatics Institute

In collaboration with James Schlitt, Harshal Hayatnagarkar, P. Alexander Telionis, Meredith Wilson MPH, Caitlin Rivers MPH, Dr. Bryan Lewis MPH Ph.D. and Dr. Stephen Eubank Ph.D.
No relationships to disclose

This work was supported by the NIH MIDAS Grant (# 2U01GM070694-09)
Motivations EpiDash 1.0

1) Provide useful epidemiological context for incidence of GI illness within a community, assist in outbreak investigation and contribute in the identification of risk factors associated with disease occurrence
2) Foster awareness of GI illness occurrence within a community and aid in outbreak detection
3) Supplement and compliment conventional surveillance systems with social media and social networking data
4) Detect trends signaling changes in the incidence and prevalence of GI syndrome illness within a health district
5) Provide estimates of the magnitude of morbidity of syndromic illness within a community
6) Contribute significantly to field epidemiologic research directly correlated with the control or prevention of GI syndrome illness.
“Population-level scanning”

The collection and analysis of health data about a clinical syndrome that has a significant impact on public health, which is then used to drive decisions about health policy and health education. The term applies to surveillance of populations and is distinct from active surveillance, which applies to individuals. Currently consist of lab reports, pharmacy prescription data and doctors visits visualized through systems such as Biosense and Essence.
Limited in scope, missing data, delayed outbreak identification

Limited Health Situational Awareness

“There's the potential for us to identify outbreaks of norovirus much earlier than before, giving us the opportunity to proactively share our advice and guidance with those who might be affected, alert other government departments and industry, and perhaps even help to reduce its spread”

James Baker, FSA
Challenges for Syndromic surveillance

BOX 1. Tasks for evaluating public health surveillance systems for early detection of outbreaks

Task A. Describe the system
1. Purpose: What is the system designed to accomplish?
2. Stakeholders: Whom does the system serve?
3. Operation: How does the system work?
 - a. Systemwide processes
 - b. Data sources
 - c. Data preprocessing
 - d. Statistical analysis
 - e. Epidemiologic analysis, interpretation, and investigation

Task B. Provide data demonstrating outbreak detection attributes
1. Timeliness: How early in the outbreak is the event detected?
2. Validity: How well does the system perform in distinguishing outbreak detection of public health significance from less important events or random variations in disease trends?
 - a. Sensitivity and predictive value: What percentage of true outbreaks are detected by the system? What percentage of signals by the system are relevant (true positives)? What percentage of negative results are truly negative?

Task C. Describe the system experience
1. System usefulness: In what ways has the system demonstrated value relevant to public health?
2. Flexibility: How adaptable is the system to changing needs and risk thresholds?
3. System acceptability: Have stakeholders been willing to contribute to and use the system?
4. Portability: How readily can the system be duplicated at another location?
5. System stability: How consistent has the system been in providing access to reproducible results?
6. System costs: What are the resource requirements to deploy and maintain the system?

Task D. Summarize conclusions and make recommendations for use and improvement of systems for early outbreak detection

* Source: CDC. Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC working group. MMWR 2004;53(No. RR-5).
The surveillance system is designed to captured statements relevant to bacterial and viral acute gastroenteritis. A case of acute gastroenteritis is defined as a person with diarrhea and/or vomiting and/or abdominal cramps due to either viral or bacterial infection. Diarrhea is defined as two or more loose stools per day or an unexplained increase in the number of bowel movements.
The field epidemiologist....

- True challenge for these tools lies in the successful integration
- Within the context of the public health department challenges are numerous
- Numerous tools have been developed with little feedback, formal evaluation or long term usage
- Tools should evaluated within a well developed framework of procedures and support designed to assist in Epidemiologic analysis, interpretation, and investigation in response to a system signal
Overview of the Surveillance System

1. Twitter statement occurs in given health district

2. Identified by the ChatterGrabber data miner, tweeters are used as a human sensor network to optimize sensitivity especially in rural areas

3. S^u is used to make an interference of the P (E^u)
 Where S is the data incoming to the dashboard from the social network and P is the current prevalence of GI syndrome activity. A health statement is relayed to health officials through EpiDash 1.0 Dashboard with epidemiological context for analysis of the data, dissemination of information, and public health action.
Data Collection
Data Collection

- **ChatterGrabber**: A search method based social media data miner developed in Python.
 - GDI Google Docs interface included for simplified partner access.
 - Alternative to free 1% streaming;
 - Specialized hunters pull from GDI Spreadsheets to set run parameters.
 - Multiple logins may be used to increase search frequency during collaborative experiments.
 - No limits on query length.
 - Data sent nightly to dashboard
ChatterGrabber Search Methods

Pure Query Based:
- Conditions, qualifiers, & exclusions.
- Searches by conditions, keeps if qualifier and no exclusions present.
- Simple, easy to setup, but vulnerable to complexities of wording.

NLTK* Based:
- Take output from conditions search, manually classify.
- Train NLTK maxEnt or Naïve Bayesian classifier via content n-grams.
- Classifier discards tweets that don’t fit desired categories.
- Powerful, but requires longer setup, representative tweet sample.

*NLTK: Natural Language Tool Kit
Tweet Linguistic Classification

Using NLTK mode?

Does Tweet contain an exclusion?

Does Tweet contain a qualifier?

Store Tweet data and derived data

Classify Tweet by features

Is Tweet classification sought?

Extract features from Tweet

Keeping non-hits?

Tweet passed for classification

Discard Tweet

No

Yes
Tweet Linguistic Classification

Please enter a test sentence: just threw up #tgif #yolo #neverdrinkingagain
Query: just threw up #tgif #yolo #neverdrinkingagain
Result: no suspicion of infectious illness

Please enter a test sentence: my son just threw up
Query: my son just threw up
Result: suspicion of infectious GI illness

Please enter a test sentence: can't believe I ate so much, just threw up
Query: can't believe I ate so much, just threw up
Result: no suspicion of infectious illness

Please enter a test sentence: oh god I feel so sick
Query: oh god I feel so sick
Result: suspicion of infectious illness, type unknown
• 74-86% accuracy with 2,000 tweet training set
• 14762 GI illness and 2075 other illness related posts.
Attributes of the dashboard development include:

- Timeliness of Data Input
- Reporting Structure
- Timeliness of Detection
- Thresholds for Signal Generation
- Trigger for Dissemination and Analysis
EpiDash 1.0 Architecture

- Ruby on Rails
 - Open source web framework
 - Ruby language
 - Model-view-controller

- MVC
 - Model talks to database.
 - View talks to browser.
 - Controller coordinates between model and view.
EpiDash 1.0 System Attributes

First Look Section:
First Look Section Analytics:

- Variables to Account for increasing and decreasing levels:
 - \(c \) = constant level of disease activity (background noise)
 - \(d \) = day of week variation
 - \(s \) = seasonal variation

Levels to Account for:

- Red, Yellow, Green.
- Weekly Mean with Standard Deviation:
 - The mean will consistent of the corresponding days in the five previous weeks to account for just over a month of data. The standard deviation for the previous five
Standard Deviation Scales:

Green: The current days value is no more than one standard deviation from the mean of the previous 5 weeks values.

Yellow: The current days value is greater than one standard deviation from the mean of the previous 5 weeks values but less than two standard deviations from the mean.

Red: The current days value is two standard deviations or greater from the mean of the previous 5 weeks values.
EpiDash 1.0 System Attributes

Day of Week Variation

Tweet count by day of week
EpiDash 1.0 System Attributes

Time Series Weekly Overview:
EpiDash 1.0 System Attributes

Time Series Analytics:

- Seasonal Trending Identification
- Keyword trending for Event based surveillance
EpiDash 1.0 System Attributes

GIS Map:
GIS Map Analytics:
- Cluster Analysis

- Identification of hotspots for illness (eating establishments, venues, events etc.)
GI Illness related tweets in Virginia between 8/12/14 and 11/10/14

Legend
- Tweets

Miles

National Geographic, Esri, DeLorme, NAVTEQ, UNEP-WCMC, USGS, NASA, ESA, METI, NRCAN, GEBCO, NOAA, iPC
GI Illness related tweets in Virginia between 8/12/14 and 11/10/14
Population Density of Virginia (LandScan 2013)

Legend

High: 18662 / km²
Low: 0 / km²
EpiDash 1.0 System Attributes

Word Cloud:
EpiDash 1.0 System Attributes

Searchable Keyword Matching and Raw Data:

- Keyword pair matching, linguistical pattern recognition and matching
Pre-Deployment

- Pre-Surveillance Intake Assessment:
 - VDH state district epidemiologists
 - Average 7-9 hours working on syndromic surveillance
 - “knowledgeable” but with limited “technical skills”
 - On a scale from 1-10 syndromic surveillance was described as “10” or highly pertinent.
 - Estimated interactions between user and interface was 3-5 times per week
 - Difficulty of usage, system portability and lack of data completeness were cited most frequent as reasons surveillance systems failed to integrate in standard surveillance protocol.
 - All users identified social media as a critical part of current syndromic surveillance
Deployment Activity

EpiDash Activity

Aug 1
Aug 15
Aug 29
Sept 12
Sept 26
Oct 10
Oct 24
Nov 7

Network Dynamics & Simulation Science Laboratory
86% accuracy and is cross validated in training set
Deployment Support

- Dashboard User Guide
- Dashboard Guided Tutorial
- Trainings
- Interactive Case Study Based Workshops
- Network Collaboration Capabilities with other State Epidemiologists utilizing Dashboard Tool
- Interactive feedback and response opportunities for Q&A
- Protocol for Refinement
BioSense 2.0 provides a mechanism to collect and share information on emergency department visits, hospitalizations, and other health-related data from multiple sources, including the Department of Veterans Affairs (VA), the Department of Defense (DoD), and civilian hospitals from around the country.
Clues from Biosense...
Other measures....

• VDH Enteric Disease Data

• Health Map
Post-Surveillance Evaluation: VDH state district epidemiologists

- Data Quality
- Level of Health situational awareness
- System utility
- Timeliness of data
- System stability
- Portability
- User-flow-time percentage
- Detection vs. Investigation
Sectional Evaluation:

- Section provides a Simple Format, Easy to Navigate, Minimalist Design to highlight critical information
- Provides targeted information
- Handles Errors Well
- Technical Configuration and Accessibility provides for ease of use within the scope of the local health district needs and knowledge
- Language and Cultural Conventions Universality
- Serves crucial application role in field work
- Layout of section encourages familiarity
- Layout of section encourages Efficiency
- Section is Responsive, engaging, opportunities for interaction and customization for specific health district
• Assessment of evaluation and further refinement to tailor and customize the dashboard to meet local and state health districts needs.
• Deployment in local Emergency and Urgent medical care facilities, schools. Etc.
• The inclusion of a broader media feed to include: local online news, newspapers and Facebook activity.
• Continue to foster awareness of ethical issues surrounding social media data collection
• **Building supportive infrastructure for surveillance system integration.**
• **NLP optimized classifiers: Public Emergency Tracker (fire, weather, crime), Norovirus, Firearms Violence, Tick Zoonoses, Vaccine Sentiment, and Ebola sentiments, unrest, rumors, & misinformation**
Beth Musser:

Virginia Bioinformatics Inst.
1880 Pratt Drive Blacksburg VA 24061

emusser0@vbi.vt.edu or emusser0@vt.edu

(336) 813-2677