Developing a Modeling Approach for Real-time Tracking of Heat-related Morbidity Counts in Maricopa County

Vjolica Berisha and Ahmed Mohamed vjolicaberisha@mail.maricopa.gov ; ahmedmohamed@mail.maricopa.gov Wekerhalicikeith.org twitter.com/Maricapatheatin facebook.com/MCDH

Surveillance for Heat-Related Morbidity and Mortality (HRM/M)

- MCDPH has been tracking HRM/M since 2006
 - Death certificates
 - Medical examiner data Hospital discharge data (HDD)
 - Syndromic Surveillance (under development)
 - Biosense 2.0

 - AZ-PIERS (prehospital data)

Heat- related	Total	Average per year
Deaths	694	77
	(2006 – 2014)	
Injuries	9,419	1,569
	(2008 – 2013)	

Heat Surveillance Goals

Ϊï

Ϊï

- To obtain real-time data and timely detection of any aberrations
 - Situational awareness
 - Disseminate more timely information to stakeholders (heat relief network)
 - Activate more timely responses
 - Decrease the burden of heat-related morbidity / mortality
 - Examine long term trends, risk factors

İï

Study objective

To identify the baseline levels & epidemic thresholds for heat-related morbidity (HRM) in Maricopa County using Hospital Discharge Data (HDD)

Methods: Data source

İİr

Ϊή

Ťř

- Hospital Discharge Data (HDD)
 - Date range: January 2006 December 2012
 - Emergency department & inpatient visits in Maricopa County, Arizona
 - Extracted ICD-9 codes associated with HRM from:
 - Primary diagnosis
 - Secondary diagnosis

Methods: Statistical Analysis

- The total number of hospital visits (regardless of reason for visit) from January 2006 to December 2012 was used as the denominator to calculate proportion of heat morbidity
- Heat morbidity rate (per 100,000 visits) along a 95% binomial confidence interval were <u>calculated for year</u> <u>and month</u> in the study period
- Extracted data were organized in a time-series format for the analysis

Methods: R package

- In R, the surveillance package was used to build and run the model for aberration detection ^{1, 2}
- The model:
 - Based on a statistical process control methods known as "prospective cumulative sum" (CUSUM)
 - Makes use of the generalized additive models for location, scale, and shape (GAMLSS); a flexible method for various model distributions ³

 Michael Höhle, Schastian Meyer and Michaels Paul (2015). Surveillance: Temporal and Spatio-Temporal Modeling and Monitoring of Epidemic Phenomena (2) R-A Language and Environment for Statistical Computing (2015). R Core Team, Vienna, Austria.
 Bight PA, Stasinopolos DM. Generalized additive models for location, scale and shape. Journal of the Royal Statistical Society: Series C (Applied Statistics). 2005;54(15):76:4.

Methods: Baseline & Threshold

 The model used known reference values to make predictions

İİİ

- A <u>baseline</u> representing the overall expected mean number of heat related visits (years 2006 – 2007)
- An epidemic <u>threshold</u> representing the expected mean number of visits corresponding to two-fold increase in the odds of heat morbidity
- The model can accommodate seasonal variations

Heat Morbidity Rates by Year				
Year	Total hospital visits	Rates (95% CI) *		
2006	1,490,708	83.65 (79.01-88.29)		
2007	1,574,666	84.02 (79.49-88.54)		
2008	1,630,952	73.82 (69.65-77.99)		
2009	1,692,626	72.90 (68.84-76.97)		
2010	1,696,305	82.12 (77.81-86.43)		
2011	1,790,260	95.96 (91.43-100.50)		
2012	1,822,682	94.53 (90.07-98.99)		
		*per 100,000 hospital visits		

eat Mor	bidity Rate	es by Month 🎁
Month	Total Visits	Rates (95% CI) *
January	1,021,104	5.68 (4.22-7.14)
February	979,397	5.82 (4.31-7.33)
March	1,036,538	19.39 (16.71-22.07)
April	980,012	34.59 (30.91-38.27)
May	985,802	81.66 (76.02-87.3)
June	912,737	205.1 (195.82-214.38)
July	931,847	300.4 (289.26-311.48)
August	971,069	249.5 (239.6-259.44)
September	965,131	96.98 (90.77-103.19)
October	983,024	21.67 (18.76-24.58)
November	958,665	9.7 (7.73-11.67)
December	972,873	4.73 (3.36-6.09)
		*per 100,000 hospital visit

Conclusions

İİ

İï

- We used surveillance tools designed in R to predict the expected proportions and thresholds for heat-related morbidity among hospital visits
- The prediction model requires:
 - Reference data for estimating expected values
 - A threshold for determining the accepted deviation from the expected values

Many Applications

- The advantage of this model is flexibility
 Can fit a wide range of distributions
 - Allows inclusion of covariates
 - Can accommodate seasonality
- This methodology can be applied to <u>other data sources</u> that are more real-time
 - Would need to consider which aberrations warrant further investigation or taking action
- This model can be modified for <u>other morbidities</u> or healthrelated issues to aid in trend evaluation and decision making

Next Steps

İħ

- Validate model against real-time data
 - Improve model sensitivity
- Make the necessary adjustments to improve the model's predictions

Acknowledgments

Ĭï

- MCDPH Office of Epidemiology Staff
- Maricopa County Office of the Medical Examiner
- Maricopa County Office of Vital Registration (OVR)
 Arizona Department Of Health Services (ADHS)
- Arizona State University (ASU)National Weather Service (NWS)
- Local hospitals (infection preventionists, emergency departments, social worker staff)

7