

Contribution of saline drinking water to high salt consumption in young adults in coastal Bangladesh

Dr. Mohammad Radwanur Rahman MBBS, MPH

APHA 143rd Annual meeting, Chicago, Illinois, USA, 2015

Presenter Disclosures

Mohammad Radwanur Rahman Talukder The following personal financial relationships with commercial interests relevant to this presentation existed during the past 12 months: "No relationships to disclose"

Introduction

- Saltwater intrusion is an emerging environmental problem in low-lying countries including in Bangladesh (Mimura, 2013)
- In coastal areas of Bangladesh livelihoods and health of more than 35 million people are currently affected, which is projected to aggravate further (Dasgupta, 2014)
- Ample and well accepted evidence on adverse health effects of high salt consumption, particularly from food → little information about exposure from increased water salinity (Vineis, 2011)
- This research examined the salt exposure and potential health risks of increasing salinity in potable water in coastal areas of Bangladesh in order to promote relevant intervention strategies.

Presentation Outline

- Introduction and Background
- Methods
- Results
- Implications and Conclusions

Coastal Areas (contd)

- Areas of multiple vulnerabilities (Minar, 2013)
- Low-lying- 86% of the land have an elevation up to 5 meter (Nishat & Mukherjee 2013)
- 12 districts (half of the coastal total land area)- cyclone risk, salinity intrusion and tidal water movement (Dasgupta, 2014)

Water Supply and Salinity

- Direct water use from natural surface (e.g. pond, river) and groundwater sources (e.g. tubewell).
- Affected by varying level of salinity (Khan et al., 2011)
- Saltwater is moving further inland (BADC, 2011, SRDI, 2012)

Salinity Concentration in Groundwater

Soil Salinity Bangladesh

Centre for Environment and Population Health, School of Environment

 Salinity level is increasing and more areas are being affected by higher salinity (SRDI, 2012)

Salt Exposure and Health Effects in Bangladesh

- Limited data available (Vineis et al., 2011)
- Among pregnant mothers-
 - High salt consumption
 - Pre-eclampsia (Khan et al. 2011, 2014)
- Adult (aged 25 years and above)
 - Coastal vs High vs Plain land- High salt consumption (Rasheed et al. 2014)

Methods

Study Population

Listing of eligible household members aged 19-25 years- 418 subjects

Available during interview- 340 subjects

Excluded Pregnant cases- 21 Refusal/ incomplete interviews - 4

Successful interview- 315 subjects is Urinary data available- 282 subjects

Data Collection

• May-June 2014

Findings

Characteristics of the Respondents

		Ν	%/ Mean (sd)
Sex	Female	184	65.9
Education (years)		275	7.7 (2.8) (mean)
Occupation	Physical labour	107	38.3
	Housewife	101	36.2
	Non labour	71	25.5
Wealth index (n=239)	Low	80	33.4
	Middle	83	34.7
	High	76	31.8
BMI (kg/m ²)		279	21.2 (4.1) (mean)

Water Sources and Salinity Level

Urinary Sodium- Spot and Estimated 24hour Level

N=279	Urinary sodium (UNa) mmol/L	Kawasaki* Estimated 24- hour urinary sodium (mmol/d)	Tanaka* Estimated 24-hour urinary sodium (mmol/d)	INTERSALT* Estimated 24- hour urinary sodium (mmol/d)
Mean <u>+</u> sd	103.7 (70.5)	197.4 (61.0)	137.1 (34.8)	118.6 (27.3)
Median (IQR^)	91.5 (43.3, 154.8)	192.1 (157.6, 233.8)	134.4 (114.7, 156.4)	115.4 (99.9, 133.9)
Range	10.5, 298.0	62.3, 469.6	59.7, 248.3	41.9, 203.6
Abnormal (%) (>100 mmol/d)	- * formula des	95.3 scribed in Cogswe	88.1 ell et al., 2013	74.9

Association between drinking water sources and 24 hour urinary sodium

	В	95%CI	p for trend
Crude (n=279)			
Surface water/Pond			
Tube well water	9.7	3.1, 16.3	0.004
Adjusted (n=254)*			
Surface water/Pond			
Tube well water	13.8	7.8, 19.8	<0.001

*Adjusted for sex, education, occupation, socio-economic status, BMI, added salt

Implications

Dietary salt and health risks

• Direct link \rightarrow Hypertension (WHO, 2012; He, 2009)

 \rightarrow Cardiovascular and Kidney diseases

(Koliaki, 2013)

 Increase of SBP→ 1.8-4.3mmHg; increase of DBP→ ~0.0-1.2mmHg (INTERSALT study)

Vulnerability of Coastal Deltas

Nicholls et al., 2007

Projected Climate Change and Salinity

- Climate change will cause significant changes in river salinity in the southwest coastal area of Bangladesh (Dasgupta, 2014)
- The freshwater river area (0–1 g/L) is anticipated to decline from 40.8 percent in 2012 (March) to <20 percent for 2050 (Dasgupta, 2014)
- An increase of moderate to highly saline river areas (3 to above 5 g/L) from the baseline in 2012

Food vs Water Contribution

Food vs Water Contribution

Conclusions

- Climate-induced sea level rise is likely to exacerbate already excessive salinity levels
- We need specific health prevention interventions and adaptation strategies
 - \rightarrow Short-medium term- reduction in salt through diet
 - → Medium- long term- alternative safe water options

Acknowledgements

- My supervisors
- Griffith University Postgraduate Student Association
- Griffith Asia Institute

CARLAGE