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Abstract

The analysis of the frequency, distribution, and determinants of adverse drug reactions, medical errors, and other adverse events poses special challenges to the statistician.     Although some errors or events might be frequent, those that seriously injure patients are usually “rare”.    As the easily identified errors are eliminated using system redesign, the remaining risks will become even rarer, although much in need of identification and reduction.   Generalizable studies, whether observational or controlled, usually require multicenter designs to obtain adequate samples.   Clinicians often identify and/or classify events with error; their best judgments exhibit suboptimal reliability.   Under these circumstances, simple statistical methods fail and results can mislead.  Using both examples from the literature and simulations, we demonstrate the impact on variance estimates of clustering of patients across multiple centers, and the effect of misclassification of adverse events on design and analysis.   The potential effect of confounding by center on the estimation of relative risk will be explained and explored.  The implications of these statistical problems for the study, analysis, and reporting of risk and determinants of adverse events will be discussed.   

Introduction

If we have correctly described the situation, Americans do not have a credible estimate of the number of deaths caused by medical errors. (Sox 2000)

One review of the Institute of Medicine (IOM) report To Err is Human thus characterized the accuracy of what is becoming a household estimate of the risk of deaths from adverse medical events.    The criticism was based on an assessment of the data underlying the IOM report, and the extrapolation from the underlying data to the estimate that “the number of deaths due to medical error may be as high as 98,000” (page 26).   Underlying any estimate must be complex monitoring systems and study designs that involve expert opinion.   The systems and designs must be complex because methods of assessment and true rates of error often vary across health care settings and regions.  Expert opinion must support these estimates because medical judgment underlies much of the attribution of cause to outcome among patients who (invariably) enter the health care system with an illness or injury.    The Institute of Medicine correctly notes that analysis takes longer (and costs more) than data collection for adverse events.    We outline why the Institute’s observation is unquestionably true (Table 1).

First, serious adverse events are often rare, and rare event rates will likely necessitate multicenter studies to have sufficient power to detect other than large true effects of interventions or exposures.   To the extent that these interventions (or exposures) will involve entire medical centers in the “treatment” group, the studies will use cluster randomization designs.   Those mandate special care for estimating effectiveness.

Second, we often cannot define precisely or identify an adverse event without error.  Case definition requires “experts”.    But experts, even competent, articulate, and honest ones, disagree regularly in the face of complex tasks of definition and classification.   Whether any summary statistics can measure or fairly reflect “agreement” remains for further investigation.   Certainly the standard kappa statistic fails to communicate the degree or consequences of lack of agreement on the identification and characterization of adverse events.

Third, the frequency of adverse events likely varies widely across and within regions (just as rates of hospitalization and procedures vary).    The variation in frequency might reflect differences in systems of monitoring, ascertaining, and counting adverse events, as well as differences in the actual frequencies.   In one course of treatment a single patient might suffer several adverse events.   Frequencies of events and their characteristics will then depend on whether all, the first, the last, or the most serious are counted and characterized.   In fact, even if we believe the Institute of Medicine findings about the frequency of deaths, those figures offer a wide range of estimates.   As a result, a multicenter assessment that seeks to estimate any risk of adverse events will have to be analyzed carefully with special attention to examining heterogeneity of risk and effectiveness of interventions.  

Fourth, if costs or utility of outcomes, whether they are treatment failures or adverse events, must be estimated and compared, the variability of those costs present an added dimension of complexity and uncertainty.   

These statistical challenges are likely to occur together.   Although generally applicable to a variety of experimental designs or observational settings, these statistical challenges can occur routinely in the field of adverse events.  Variances are not simple to compute; biases can be substantial and in either direction.   Finally, the problems we outline can be cumulative – studies must be larger and larger to demonstrate smaller and smaller differences – in order to maintain a sound study design and analysis.  For these reasons, studies of medical adverse events can easily succumb to statistical adverse events.    

Table 1.   An overview of “statistical adverse events” in the study of medical adverse events

	Rare events: (1) Require large studies to be able to detect change or effect

                     (2) Require even larger studies to demonstrate noninferiority (“as safe as”)



	Case definition:

Expert opinion required to define adverse events.

Definition and characterizations can depend upon methods of ascertaining or monitoring

Misclassification of adverse events reduces power and increases bias



	Need for multicenter studies leads to demand for multi-level analyses:

                        Cluster randomization designs

                        Multi-center observational studies

                        Meta analyses



	Multicenter studies can produce confounding by center 



	Combining costs and effectiveness of multiple endpoints leads to large variance 




Characterizing the problem

The statistical approach to adverse events

For the purposes of this discussion, we characterize a “statistical adverse event” as any challenge in design or analysis that runs the risk of producing an estimate or inference that could be erroneous (wrong direction), biased (correct direction but wrong magnitude), or imprecise (wide confidence interval around the estimate).   Investigations of the frequency and determinants of adverse events, and evaluations of interventions to reduce their effect, should follow the same principles of experimental or study design and the same methods of statistical analysis as any other study of the epidemiology of disease or the efficacy of treatment.    Even when the problem of adverse events becomes a center of political attention and action, good study designs and analyses will be needed to transform those actions into effective interventions.  

Multiple outcomes –

Adverse events occur during treatments that are designed to cure.     For any study or intervention, there are at least two outcomes.    We might tolerate substantial risk of an adverse event when the alternative is grave.  For example, the recent experimentation in completely-self-contained artificial hearts poses huge risks of many mishaps.  But when the alternative is rapid demise, the patients will take the risk.   Likewise, chemotherapy involves known risks of toxicity and errors that are accepted in the face of cancer, but would never be acceptable for the treatment of simple infections.   (Brewer 1999).    

The standard report of therapy takes the form of a report of drug efficacy in a two-treatment randomized controlled trial.   Along with that report of efficacy usually follows the two-arm comparison of adverse effects.   The benefits and adverse effects differ in both frequency and type.    A benefit might be a reduction in morbidity or prolonged survival for a chronic disease, while an adverse effect might be a severe, acute and possibly fatal illness.  

A body of statistical literature addresses the issue of multiple, sometimes competing endpoints in clinical trials.   (McMahon 2001).  These issues apply as well to observational  studies.   Assume that either, or both of, two endpoints (1) a cure or treatment effectiveness, and (2) mortality or an adverse event can occur.   A hypothetical example might be the treatment of 1000 persons for a disease, which if left untreated would result in 50 deaths (5% risk).   Under a new drug treatment, the risk of death from the underlying disease falls to 25 out of 1000 (2.5% absolute risk difference or a relative risk of 0.5).   Using either of these measures, one might conclude that the treatment is effective – it results in fewer deaths than does no treatment at all.   Assume that the drug is not without risk.  The manner in which it is administered produces errors in practice either because of the caregivers or the patients, and that this risk leads to 10 deaths per 1000 persons.   The total risk of death from treatment becomes 35/1000 or 3.5%.   This risk is below that of not treating the disease.  In fact, the net effectiveness is 15 lives per 1000 persons.    Of course, the 10 persons who perish from drug errors might have survived without any treatment.   Thus, we might see reports that adverse drug events (ADEs) have a risk of death of 1%.    Grossed up to a population of 100,000 potential users nationwide, that might amount to an estimated 1000 “unnecessary” deaths due to ADEs.    Therefore, a treatment that saves a net 1500 lives becomes one that “kills” 1000.

Of course, treatments do not clearly save lives and adverse events do not always result in death.  The complexity arises both because of the nature of the comparisons and the lack of independence of outcomes.    First, the probability of a cure might depend on the risk of an adverse event, for the eventual cure might require ongoing therapy that must cease if an adverse event occurs.    In this sense, the adverse event might represent informative censoring of any patient followed for a cure.   (Wu 1988)    Second, the investigator cannot focus on one outcome alone in any tests for effectiveness or safety.     Should the investigator consider each outcome to have a Type I error and then consider both when assessing one intervention over another (McMahon 2001)?    Or should there be an order of analysis?  For example, should we first assess whether one treatment is safer than another (with a p-value < 0.05), and only if it is safer should we then consider whether it is more effective?   Should the second critical p-value be less than 0.05 because we have already done one statistical test and the second is conditional on the first?  Should the initial test be not one of superior safety but rather equivalent safety?   Should the outcomes of safety (an adverse event) and efficacy (cure) be assigned relative weights to permit the comparison of treatments or interventions based on relative importance?   How should those weights be assigned?   If mortality is the endpoint for efficacy, then safety can be built into the same endpoint, with the comparison between groups being all-cause mortality.    The challenges arise when non-fatal outcomes are compared, e.g., the non-life-threatening infection being treated and the gastric bleeding being avoided.  

Why  statistical problems are challenging

Adverse events can have many causes and many manifestations.   For example, in the field of adverse drug events (ADEs), an adverse event  can be seen in the following scenarios:  an unexpected reaction from approved drugs prescribed and used properly, an expected but not certain reaction from approved drugs correctly prescribed but improperly administered, an expected but not certain reaction from approved drugs prescribed in error, an expected outcome of an underlying disease that might be delayed or averted by standard therapy but for an error in the diagnosis or identification of the underlying disease, an expected but not certain outcome from the administration of therapy performed inappropriately, an expected but not certain outcome from the administration of therapy performed appropriately but inadequately.    When an adverse event occurs, we must ask whether it is the result of one or more different potential causes.     Patients who enter the health care system and seek medical intervention are usually already  ill.    They are often at increased risk for an unfavorable outcome, whether from the preexisting disease or from an adverse reaction, response, or encounter with the treatment.   These are in one sense akin to “competing risks”, as the term in known in statistics. (Woodward 1999).    Two overriding challenges for both experimental and observational studies are (1) distinguishing between adverse events and the inevitable results of illness, and (2) identifying the one or more exposures or causes of adverse events.    
Rare events

Regardless of their apparent or perceived ubiquity, serious adverse events are rare in the statistical sense.    The incidence and the size of the effect to be measured or detected become the basis for sample size or power calculations common to most biomedical investigations.   (Strom 2000).   Table 2 reports some recent studies that have estimated the frequency of adverse events.   Although some process errors, such as an incorrect drug order, might occur in large numbers, the common errors are often not the ones of most concern.     The focus on prevention will likely be on the most severe adverse events.  These have very low risk of occurrence of around 5 per million for drug-induced blood dyscrasias and toxic epidermal necrolysis (Kaufman 2000).    Even when looking the same data, investigators can arrive at vastly different risks, for example 10,000 vs 680 as the estimated annual frequency of deaths (in Canada) from adverse drug reactions.  (Bains 1999).   For some conditions, we do not even know what the true underlying rate might be, even if we could design an intervention to reduce that risk.   

Rare events are not a problem, of course, if the intervention to prevent them is sufficiently dramatic.  For example, the use of a consulting pharmacist on the ICU team produced rates of preventable ADEs between intervention and control units of 3.5 and 12.4 per 1000 patient days.   (Leape 1999)   But the rates noted in these studies perhaps reflect the most extreme risk.  We do not know, for example, the typical risk of adverse events in the ambulatory settings, such as drug prescribing in the physician’s office or free standing clinic.   In any event, regardless of the absolute number of adverse events that one might estimate for the United States as a whole, the risk of a serious adverse event in the context of the huge number of persons at risk, remains small in statistical terms.  

Table 2   Events rates of selected types of adverse events

Event





Rate


Reference

	Bleeding in outpatients on warfarin

	6.7%/yr
	Beyth 1998

	Medication errors per order


	5.3% (n=10070)
	Bates 1995

	Medication error per order

	0.3% (n=289000)
	Lesar 1997

	ADE per admission


	6.5%


	Bates 1995

	ADE per order



	0.05% (n=10070)
	Bates 1995

	ADE per patient


	6.7%

	Lazarou 1998

	ADE per patient


	1.2%

	Bains 1999

	ADE in nursing home patients
	1.89/100 pt-months
	Gurwitz

	Nosocomial infections in older hospitalized patients
	5.9 to 16.9 per 1000 days
	Rothchild 2000

	Pressure ulcers


	5%


	Rothschild 2000


Superiority studies

Safety reporting of randomized controlled trials has been “largely inadequate”.   (Ioannidis 2001).    One reason might be that studies designed to estimate safety can be more expensive and less precise than those designed for estimating efficacy, regardless of whether safety and efficacy are measured in the same or different studies.  RCTs of drugs are usually designed to demonstrate superiority of a new drug over standard therapy (or placebo).   The outcomes are carefully defined in advance, and then equally carefully ascertained by means of constant monitoring.    

The paradigm of the superiority study can be applied to adverse events when the investigator could declare objectively by protocol the characteristics of the endpoint (adverse event) and the rules for its ascertainment.   If the focus were on comparisons of drug safety, a superiority study would test whether the risk of adverse events was lower in a new treatment than in the standard treatment.  

Power calculations are common, and should be essential, in any investigation of treatment superiority.  Table 3 reports some simple results on the power to determine whether an intervention reduces the risk of adverse events below that of standard care.  The standard might be a drug, treatment, or system of diagnosis, prescribing, patient compliance, and monitoring (fee-for-service contrasted with managed care)  These initial tables assume that the study involves people selected with simple random sampling from a population.   There are other complexities that might have a more severe impact on sample sizes.    Even in the simplest case, a study to show reductions in risk might have to be huge. 

Table 3.  Sample sizes required to demonstrate a reduction in risk of adverse events with 80% power

	Baseline Risk
	Reduced Risk
	% reduction
	Sample per group
	# AEs observed

	.05
	.04
	20%
	6700
	603

	.04
	.03
	25%
	5350
	400

	.01
	.005
	50%
	4700
	70

	.005
	.0025
	50%
	9350
	70

	Alpha=0.05.

Computed using Power and Precision ver 2 (Borenstein 2001)


Noninferiority studies

More realistically, adverse events become one of two outcomes in the study of a single new treatment or therapy.  In these instances, comparisons of safety and efficacy are simultaneous.  The goal becomes a dual comparison: testing whether the new treatment is (1) at least as safe as (noninferior), and (2) more effective than, the standard therapy.    These studies might be randomized controlled trials with a predefined purpose to demonstrate efficacy and rule out lack of safety.  Alternatively, they might be observational studies to demonstrate that the risk of one drug is no worse than the risk of another, while its benefit is superior.    

Noninferiority studies  present special challenges.  In the case of a standard superiority study, the goal is to find a difference between the new therapy and the standard care.   Problems such as selection bias, nonadherence to therapy, use of other drugs or treatments in addition to the one under study, failure of strict inclusion or exclusion criteria, incorrect dosage all work to reduce the observed differences between the two treatments, and thereby reduce the power to demonstrate superiority (Temple 2000).    For noninferiority studies, these same study imperfections reduce the difference between the two treatments and thus make then more alike.   But, unlike the superiority study, the goal is to demonstrate small differences.  Instead of having sloppiness of study execution working against the intended finding, it works in favor of the intended findings.    

Even assuming that a study is well done with few imperfections, huge numbers of patients are needed to demonstrate that one treatment or intervention is no more dangerous than another.  (Table 4).     A scenario might be the advent of a new drug that promises improved efficacy in the form of symptom relief (arthritis pain, for example).     To justify this new drug, we must ensure that it is as safe as the existing drug.   We assume that adverse event rates are low, otherwise the standard drug would not be acceptable for use.   We are likely to tolerate only limited reduction in safety to justify the increased efficacy.   Suppose we can accept no more than a 20% increase in the risk of an adverse event for a treatment that currently carries a 1% risk of serious adverse events.  These standard tables suggest that a two-group study would require 31,000 patient per group.  The same principles would apply to a system intervention that, for example, seeks to reduce the cost of care but at the same time not increase the risk of adverse events by more than 20%.   One of the drawbacks of noninferiority studies is the large number of persons placed at risk for various suboptimal outcomes during the accrual of sufficient evidence to demonstrate statistical significance.  In other words, studies to rule out an increased risk themselves expose patients to risk.  

Table 4.   Sample sizes for establishing equivalent (non-inferior) safety in a study of two drugs.   

	True Adverse Event Rate
	Acceptable

Inferiority
	Observed RR
	Sample Size

Per group
	Number of AEs Observed
	Power

	1%
	0.1% pts
	1.1
	125,000
	2600
	0.81

	1%
	0.2% pts
	1.2
	31,000
	680
	0.80

	1%
	0.5% pts
	1.5
	4900
	120
	0.80

	5%
	1% pts
	1.2
	6000
	660
	0.81

	Assume alpha=0.05, one-sided test. Computed with Power and Precision v 2 (Borenstein 2001)


On top of the sheer complexity of noninferiority studies are two additional complications.   First, each one of these adverse events would have to be correctly characterized.   If there were misclassification then the issue of reliability of determinations would enter the sample size problem.   Second, no one center could likely supply the volume of patients in any study design for this type of analysis.   For that reason, the likely studies would be multicenter.    These additional complications we cover next.  

Reliability of Determinations  - The “case definition” problem
Essential to the study of adverse events is a careful definition of the adverse outcome.(Jick 1998).   This problem resembles case definition of syndromes and diseases.   Imperfect definitions result in misclassification of patients according to outcome.   The large and growing literature on agreement of experts’ determinations of adverse events suggests, in short, that every dimension of describing the cause and severity of adverse events produce disagreement between experts and panels of experts.    Part of this disagreement lies in the unexpected, unplanned nature of many adverse events.   For a standard comparison of effectiveness of treatment, the investigator develops a protocol in which the outcome of interest is clearly articulated in advance and then monitored in anticipation.   For the study of adverse events, by contrast, the outcome is often unexpected and is characterized after the fact.   Therefore, by the nature of their occurrence, adverse events become the subject of disagreement and debate.  

The well-known kappa statistic, or related measures, often are used to measure the degree of agreement corrected for chance.  (Feinstein 2001) Table 5 reflects some of these estimates from recent studies on adverse drug events.   Substantial differences in reported kappa values might reflect the method in which the candidate ADEs are presented to the experts.   In Bates’s 1995 study, for example, the reported agreement among the multiple reviews by physicians were strikingly high.    But we do not know from the study design the prevalence of ADEs in the sample on which agreement was based.    The samples were referred to the physicians by  nurse and pharmacist investigators who assessed the presence of an ADE.   Such an exercise is quite different from one in which the investigators are presented with a sample of medical records (or a sample of patients) and asked whether the observed condition was due to an ADE or an underlying illness or other cause.   Why levels of agreement are sometimes low perhaps reflects the separation in time and sometimes location between the cause and the manifestation of the adverse event.  

Table 5  Rates of agreement for identifying and classifying adverse events

	Event
	Agreement
	Reference

	

	Bleeding in outpatients on warfarin
	Kappa=0.87
	Beyth 1999

	Hospital ADEs
	Bates 1995a

	
	Presence
	Kappa=0.81 to 0.98
	

	
	Preventability
	Kappa=0.82
	

	
	Severity
	Kappa=0.32 to 0.37
	

	Nursing Home ADEs
	Gurwitz 2000

	
	Presence
	Kappa=0.80
	

	
	Preventability
	Kappa=0.73
	

	
	Severity
	Kappa=0.62
	

	Preventability of deaths
	ICC=0.34
	Hayward 2001

	
	
	

	Classifying anesthesia errors
	
	Levine 2000

	Discussion:
	Before 
	Sav=0.07 to 0.10
	

	
	After
	Sav=0.71 to 0.74
	


Notes:  ADE= adverse drug event; ICC= intraclass correlation coefficient, an equivalent of a weighted kappa for continuous data.  Sav = a kappa-like statistic attributable to O’Connell (1984).

Simulations of agreement among reviewers

Because of the case definition problem, we resorted to simulations to assess the impact of disagreement among observers on bias and statistical power.    Simulations allow the investigator to make assumptions assuming that the unobservable (adverse event) is known and observable.    These simulations fixed the true prevalence of adverse events in a hypothetical sample, the prevalence as found by two observers, the sensitivities of their judgments (Pr(found ADE given that an ADE occurred in fact)), the probability that one observer would find an adverse event, given that the other has also found one, and the probability that one observer would find no adverse event, given that the other found no adverse event.   We know from prior work that these two probabilities differ widely.    For example, the first probability is often low (50% might be typical), while the second is quite high (90% or greater would be expected).    Simulations allow the investigation of variability as well as bias under conditions of random variation.   Table 6 demonstrates how these estimates translate into kappa values.  They are all based on simulations of 1000 datasets each, although one could compute these values with algebra.   

Table 6.   Kappa statistic for observer agreement – Relationship to marginal rates of finding adverse events, probability of agreement between reviewers, and prevalence

	AE Prevalence
	Sensitivity of

Observers
	Pr(agreement 

Between raters)

given AE or not
	Kappa given the 

True AE status

	
	Observers
	
	
	

	True
	#1
	#2
	#1
	#2
	AE
	No AE
	Both
	AE
	No AE

	0.01
	0.01
	0.01
	0.5
	0.5
	0.75
	0.95
	0.84
	0.49
	0.95

	
	
	
	0.8
	0.8
	0.75
	0.95
	0.79
	-0.23
	0.94

	
	
	
	0.5
	0.5
	0.50
	0.90
	0.69
	0.00
	0.90

	
	
	
	0.8
	0.8
	0.50
	0.90
	0.63
	-0.48
	0.95


The observer AE prevalence is the frequency with which an observer finds an adverse event.   This might differ from the true prevalence.   Sensitivities mean the probability that an observer classifies an outcome as an adverse event given that one has occurred.   Of course, the occurrence is not observable.   The probability of agreement given an AE means the probability that one observer will find an adverse event given that the other has also found an adverse event and given that the outcome is in fact an adverse event.   Conversely, the probability of no AE is the chance that one observer will categorize an outcome as not being an adverse event given that the other person has also found it to be not the case, and no adverse event has in fact occurred.     Once these probabilities are defined, the other measures of accuracy and agreement can be computed.   For example, in these simulations, the resulting specificities 0.99 or greater, as might be expected.   Kappa values are the mean results of 1000 simulations.      

______________________________________________________________________________

Kappa does not behave as one might think it should.   As the sensitivity of each observer increases, for example, one might expect, holding all other factors constant, that kappa should improve.  After all, as sensitivity increases, the observers are missing fewer adverse events.   But kappa does not behave logically in real situations.   The kappa statistic suggests increased agreement, but only when no adverse event is present.   These agreements are not observed, or observable, however, because we cannot know the true status of an outcome as an adverse event.  The only observed agreement and its kappa would be for all outcomes combined.   These results suggest, however, that under many circumstances, an overall kappa measure of observer agreement might reflect poorly the degree of agreement as to the presence of an adverse event or the association between the level of agreement and status of an outcome as being an adverse event or not.    These anomalies occur on top of the well known problem of the dependence of kappa on the prevalence of the outcome among the observers.    In short, one statistic will not reflect accurately the level of agreement (Feinstein 2001).   Next, we turn to the implications of imperfect agreement on estimates of the risk and relative risk of adverse events.  

Impact of reliability on estimates of incidence

Whether limitations of expert reliability will affect an estimate of the incidence of adverse events depends upon the reason for imperfect reliability.    Suppose that the true risk of an adverse outcome is 5%, and that the reviewer (or team of reviewers) tends to find adverse events in exactly 5% of the cases reviewed.   Although they might not find the same adverse event as another team of experts, an estimate of prevalence based on their findings will be unbiased.    In other words, the point estimate of 5% and the resulting confidence intervals will be the same as if there were no misclassifications.   

Quite often the reason for imperfect reliability arises because experts do not find adverse events at the same rate. (Localio 1996)   This lack of calibration, as it might be called, occurs often in medicine: experts find disease and abnormalities at very different rates among the same group of patients.   Individual experts’ rates of finding adverse events might vary substantially.    For example, in a large group of medical records (about 7500) with duplicate reviews from the New York Medical Practice Study, the case-mix-adjusted  reviewer-specific rates of finding adverse events among more than 100 physicians varied more than 4 fold, from 10% to more than 40%.  (Table 7)    The rates had to be standardized for case mix because the experts did not all review the same set of records.    This extreme variability persisted although the adjusted rates reported in Table 7 were shrunk towards the mean to compensate for random variability of the individual-experts’ rates.   When expert calibration varies, reviewer agreement is likely to be disappointing.  

________________________________________________________________________

Table 7.   Marginal rates of finding adverse events by physicians reviewing charts previously screened for potential adverse outcomes.

	Reviewer
	Cases
	Adverse Events
	Standardized Rate*
	p-value*
	

	5 selected physicians whose rates of finding adverse events were significantly low



	1
	169
	11
	9.9
	<0.001
	

	2
	41
	4
	11.3
	0.015
	

	3
	48
	1
	11.4
	0.033
	

	4
	442
	39
	12.2
	<0.001
	

	5
	170
	23
	12.8
	0.001
	

	5 selected physicians whose rates of finding adverse events were significantly high



	1
	1147
	379
	29.3
	0.002
	

	2
	181
	77
	41.0
	<0.001
	

	3
	15
	11
	41.7
	0.016
	

	4
	103
	45
	43.4
	<0.001
	

	5
	61
	27
	43.7
	<0.001
	


*Rates were standardized and p-values computed using generalized linear mixed (random intercept) models with binary outcome and normally distributed random effects

Source:  Localio et al. 1996.   This is an abbreviated version of the original table.

________________________________________________________________________

Depending on which reviewer or reviewers happens to be identifying the adverse events, the observed prevalence can depart from the true rate, and 95% confidence intervals for the observed rate will not function as true confidence intervals about the true rate.   Estimates of prevalence can therefore be markedly biased if based on opinion that varies with experts.    For example, a four-fold difference in the rates of finding adverse events equates to halving or doubling an estimate of the overall risk.   In stark terms, the 3% risk reported might range from 1.5% to 6% depending on the choice of reviewers.  

Impact of reliability on estimates of relative risk

Having less than perfect expert classification of adverse events can result in biased estimates of the effectiveness of an intervention or the relative risk of an exposure.   If the misclassification is nondifferential across interventions or treatment/exposure groups, the observed relative risk will be biased towards a finding of no effect.  This impact of misclassification is a well known function of sensitivity and specificity of the observer.  But since an adverse event is determined only by an expert, the true status is not observable, sensitivity and specificity cannot be computed, and the extent of misclassification does not follow standard formulae.    Through simulations, however, we can estimate the extent of bias under varying levels of expert agreement.


(1) Superiority studies

In a study that would “establish baseline rates of specific types of error and monitor trends.” (Institute of Medicine, page 68,   statistical analysis would estimate the baseline risk of an adverse event and then the risk after an intervention (or over time).   Our simulations examined the impact of disagreement on estimates of the effect of intervention that would reduce the risk of an adverse event by 50%.   This effect size is based on the Institute of Medicine’s statement (page 60) that a 50% reduction in preventable adverse events over the next 5 years is imperative.   Table 8 outlines the extent of bias and the reduction in power to detect a relative risk of 0.5.   As before the kappa statistics are computed from stipulated values of observer sensitivity, specificity, and agreement (assuming that we could observe the true adverse event status).   The table shows that with values of kappa that investigators would call evidence of good to excellent agreement, the observed relative risks would be heavily biased toward a relative risk of 1.0.   As a result the power to detect an effect of an intervention or a difference in the risk of an adverse event by exposure group is seriously diminished.   Good levels of power (0.95) from a sample of 3000 patients are reduced to poor levels (below 0.5).    As with our prior simulations, these are based on assumptions about an unobservable event (the adverse event).    Reduced power equates to increased Type II error.  

Table 8 also demonstrates that a decrease in “agreement”, either as reflected by the probability that a second expert will find an adverse event, given that the first has done so, or as measured by the kappa statistic, does not necessarily reduce power.    The key to statistical power are sensitivity and specificity, but as previously noted, those measures of accuracy are absent because the true nature of the outcome is not observable.   


(2) Noninferiority studies 

Bias towards a relative risk of 1.0 because of misclassification of the outcome (adverse events) poses far more danger to noninferiority studies.   Because the null hypothesis in those studies is inferiority, and the alternative is equivalence (no difference), the bias from misclassification increases the possibility of Type I error.   Lack of agreement on adverse events means that the investigator is more likely to find a new treatment to be as safe as the old treatment, when in fact the new therapy might have a significantly greater risk of adverse events.  This effect is therefore very different from the effect on the classic superiority study.   

________________________________________________________________________

Table 8 Correspondence among kappa, observer  sensitivity and specificity and bias in relative risk reduction in an intervention program to reduce adverse events.    Baseline risk =0.05 (5%).    True RR=0.5 (50% reduction in risk through the intervention).  Sample = 3000, equally divided into two groups.   

	Obsvr

 Sn
	Obsvr

 Sp
	Obsvr

 risk
	Pr(O2=AE+

|O1=AE+)
	Pr(O2=AE-|O1=AE-)
	kappa
	Ideal power
	Actual power

	Effect of increase of observer sensitivities 



	0.5
	0.99
	0.05
	0.75
	0.95
	0.86
	0.94
	0.35

	0.6
	0.98
	0.05
	0.75
	0.95
	0.84
	0.95
	0.48

	0.8
	0.99
	0.05
	0.75
	0.95
	0.79
	0.96
	0.78

	Effect of decrease in observer agreement



	0.5
	0.97
	0.05
	0.5
	0.9
	0.72
	0.95
	0.38

	0.6
	0.98
	0.05
	0.5
	0.9
	0.68
	0.95
	0.51


Notes:   Pr(O2=AE+|O1=AE+) means the probability that the second of two observers will find an adverse event given that the first observer has found an adverse event.    :   Pr(O2=AE1|O1=AE1) means the probability that the second of two observers will not find an adverse event given that the first observer has not found an adverse event.    

All estimates are based on means of 1000 simulations of two reviewers determining adverse events on the same set of cases.   Kappa statistic and specificity were computed based on stipulated values of sensitivity (Sn) and probability of agreement of observer #1 given that observer #2 did or did not determine the case to be an adverse event
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These estimates of bias assume nondifferential misclassification.   If one team of experts is assigned to review all suspected adverse events,  misclassification should be nondifferential.  If a study covers several hospitals or health plans, different teams of experts might review the intervention and the control groups separately.   The opportunities for differential misclassification are then abound, and bias could be away from the null as well as towards the null.   Both superiority and noninferiority studies might have increased Type I or Type II errors.  

Multicenter Studies

Our discussion until now has assumed analyses in a single center, hospital, or clinic.  That focus might be natural for a typical quality improvement initiative that is tailored to an institution.    The center-specific interventions benefit from their focus  -- they can be adapted to the local culture.   They suffer from lack of generalizability and reproducibility, however, and for reasons previously covered, they might be too small for a formal evaluation of their effectiveness.   

Many formal studies of the prevalence, determinants of, and interventions for adverse events will of necessity require multiple center or institutions.  One center cannot supply all patients.     Multicenter studies enjoy many strengths (besides adding to the sample size).  One is generalizability.   Data from 30 centers across the country on the efficacy of an intervention to reduce the risk of adverse drug reactions in patients on warfarin, for example, might be more persuasive than a similarly powered study (one with the same effective sample size) at a single institution.  (ICH Guidance E9, 1998)   But multicenter studies introduce yet another set of “adverse statistical events”.  (Table 9)  For example, we know that error rates vary by center.   This variation among centers violates the assumption of independence of observations for any analysis of patient-level data.   The impact of this lack of independence varies with the study design.   

Randomized studies

The study of differences in risk of adverse events should follow the relevant guidance applicable to multicenter drug trials in general.    In these designs patients would be randomized to intervention and control groups ideally of equal proportion within each center.   The goal is to demonstrate that one drug or treatment is safer than another, in terms of its having fewer adverse events.   But the optimal analysis for multicenter studies remains controversial: whether to account for center-by-group interaction, how to analyze variation in the risk across center and variation in the treatment effect across centers, and how to analyze the variability.    (Fleiss 1986; Gould 1998; Jones 1998; Agresti 2000)    

Whether the investigator adjusts for this variability by treating the centers as fixed or random effects influences generalizability.    Random effects analyses assume that the centers in the study are a random sample of centers in the population of centers.    Inferences from the sample of centers in the multicenter study are therefore generalizable to the population, just as inferences from a random sample of patients might be generalizable to a population of patients.   By contrast, the fixed effects analyses assume that the centers in the study represent only themselves.    Generalizability is more limited.   

Cluster randomization designs.    

Studies of intervention to reduce adverse events might not be able to benefit from the strengths of having balanced randomization to two groups of patients within each center.      The intervention might have to be applied to an entire hospital or practice.  For example, certain computerized reminders or drug-drug interaction software might have to be implemented across an entire institution.    In these cases, it might be unethical or impractical to randomize patients to one intervention versus a standard care group within a single practice or hospital department.    Issues of contamination of the groups of patients arise frequently when the intervention seeks to modify physician practice and that modification must apply to all patients (or none).    In these instances, one strategy consists of recruiting all the patients in a group of hospitals or geographic areas and then randomizing the entire practice or area to treatment or control.  These are called cluster randomization designs, for the hospital, clinical, or area is a cluster of patients.

The statistical perils of cluster randomization design have recently been the subject of many articles and several texts   (Donner 2000; Murray 1998).   The most noted danger is  the substantial underestimation of the required sample size of a study and/or the failure to use statistical methods that adjust for the natural clustering of patients within studies.    The statistical issue is simple.   Standard sample size and power programs rely on the assumption of independence of observations (patients).  But in the case of cluster randomization designs the intervention focuses on the institution or the physician.   As a result, patients at the hospital or in the practice tend to be treated the same way.   If the goal is to reduce the frequency of adverse drug events, for example, and the intervention takes effect across all patients, we could expect that a reduced risk to one patient will parallel a reduced risk to another patient in the same hospital.    These studies invariably require more patients than designs that randomize individual patients.   (Localio 2001).     

One statistical solution is to add centers to a study.  Statistical methods usually require 30 or more centers for their underlying assumptions to apply.   Often the number of centers is limited by logistical, proprietary, or liability issues.    A research organization might encounter barriers to enrolling area hospitals or clinics because these institutions compete for patients and physicians or because legal counsel will advise against participating in any study that exposes the institution to any risk.  

Another solution might be to combine longitudinal measures with cluster randomization.   For example, two sets of hospitals would be randomized to an intervention and control after a period of monitoring to estimate their baseline rates of adverse events.  Then, those institutions randomized to the intervention would receive it, while those randomized to control would continue to be observed.   After the treatment takes effect, the risk of adverse events would again be monitored in both treatment arms.  In these design, the comparison of interest is the interaction between time and treatment.    Owing to our ability to follow individual institutions over time, we can in essence use each institution as its own control.   These longitudinal studies do not require that individual patients be tracked over time, and yet they benefit from the strengths of paired designs.  Statistical power can increase substantially.  (Murray 2001)

Planning these longitudinal, clustered studies becomes problematic for the investigator must estimate two correlations: (1) the intra-class correlation of patient within hospitals or practices, and (2) the intra-class correlation coefficient of adverse event rates within hospitals over time.  Both correlations will affect the power to demonstrate differences between treatment groups over time.   These correlations are typically difficult to estimate prior to collecting actual data from the patients and hospitals in the study.    In addition, the statistical models appropriate for analysis require careful attention to the specification of random effects of center and center-by-time combinations (Murray 2001)

Community intervention studies

A special case of cluster randomization designs offers exceptional opportunities for an intervention to reduce adverse events.   Community intervention studies would, in the context of the study of adverse events, involve a treatment so broad that it must be applied to an entire locale.  One such intervention might be a combined pharmacy – physician program of education and information feedback for reducing outpatient medication errors for a community of patients and their physicians and pharmacies.     This brand of intervention might be needed to resolve those types of adverse events that involve systems that span several institutions.  

Community intervention designs pose special statistical difficulties.   (Feng 2001).   These include the small number of communities usually randomized and the large inflation of variance (over that of simple randomization at the individual patient level).    

Although a study that enrolls thousands of patients might appear to be large, it could still have small power to detect an important difference between the intervention and control communities.    This divergence between intuitive and actual power characterizes all types of cluster randomization designs.    Although the initial tendency might be to add additional patients to such a study to increase power, that strategy might fail.    Only if the number of communities (or centers) is increased will statistical power improve significantly.   Therefore, the cluster randomization studies must add more patients by adding more communities, a sometimes impossible task.  

For purposes of planning and analysis of these designs, a further impediment lies in the difficulty of estimating the variance among the communities.   In general, these estimates become unstable unless the number of communities is about 30, but enrolling this many communities often becomes prohibitive.    Although these designs tend to involve relatively small numbers of communities, proper attention to design issues can result in adequate statistical power.   (Koepsell 1992).    One method might be careful stratification of communities so that like communities are assigned to intervention and control   (Donner 2000).   

Observational studies

Observational studies of the risks of adverse events pose another source of statistical challenges:  the inability to control completely for confounding and selection bias.    For example, suppose a study seeks to assess whether individuals in hospitals with lower nurse-to-patient ratios tend to suffer adverse events more often than those in hospitals with more generous staffing.   Staffing becomes the “exposure” variable in the context of epidemiology.    Even if an adjustment for clustering of patients within hospitals can produce appropriate estimates of variances and correct confidence intervals, the issue remains that selective referral could produce the observed association.    The low staffing might represent highly efficient operations in the best managed institutions with the lowest true risk of adverse events.   But these hospitals might also attract the patients with the most complex conditions who are most prone to adverse events regardless of the institution.  The inability to adjust fully for differences in patient characteristics has been well documented (Iezzoni 1997), and systems of adjusting designed for one measure of outcome (mortality) might fare poorly for the adjustment of patient differences in the risk of an adverse event.    For this reason, the challenges that already face those who wish to profile hospitals, physicians, or groups will continue to plague those who wish to design observational studies to compare risks of adverse events.  

These difficulties might be overcome by careful attention to longitudinal studies of institutions.  These might be called repeated measures cross sectional studies, because the patients observed at different times will not overlap although the institutions are followed over time.   These studies allow one to control to some degree the differences in patients by assuming that referral patterns will not change over time.  Thus, as in the case of the randomized designs, the contrast of interest is the time-by-exposure interaction.    As with randomized studies, however, the estimation of statistical power requires initial, but often problematic assessments, of intra-class correlations of patients within groups and of groups over time.   

Table 9.   Statistical issues for multicenter designs on adverse events

	Type of Design


	Statistical Issues

	Randomization within center
	Random effects or fixed effects analysis of effect of intervention

	Cluster randomization 
	Correcting analysis for variance inflation (design effect)

	
	Combining longitudinal component to increase power

	Randomized community interventions
	Need for many communities

	Observational studies
	Selection bias from referral of patients to centers

	Noninferiority studies


	Special need  to balance assignment within center and analyze conditional upon center 


Noninferiority studies

As noted previously, the sample size requirements for noninferiority studies are substantial.   If to overcome this challenge the investigators use multiple centers, then the problem can worsen, for then the both the baseline risk (in the standard-care patients) and the relative risk of adverse events might vary across centers.

Heterogeneity in risk and relative risk across centers can decrease the power to demonstrate noninferiority of one treatment over another, in terms of risk of an adverse event, but only if the method of analysis neglects to consider the multiple centers.     Table 10 reports the results of simulations of a large multicenter trial, with each of 120 centers enrolling 100 patients each, and assignment to treatment balanced within center.    The data are generated to produce variation in the risk of adverse events across center.   If the analysis fails to account for center, as would a simple computation of risk difference (or relative risk or odds ratio) and its confidence interval, the power decreases by 15%.  But if the analysis accounts for the center, the power remains unchanged.    Far more work needs to be done in the field of testing for noninferiority in the context of multicenter trials, when heterogeneity of risk and treatment differences is suspected across centers.   
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Table 10.   Impact of multicenter heterogeneity on power to demonstrate noninferiority (risk of adverse events is no worse in one group than another)

	Random Center Effects in the data
	Method of Analysis
	Power

	Intercept
	Slope
	
	

	N
	N
	Risk Difference (pooled)
	0.71

	
	
	Mantel Haenszel (conditional)
	0.75

	
	
	Random Effects (conditional)
	0.72

	
	
	
	

	Y


	Y


	Risk Difference (pooled)
	0.60

	
	
	Mantel Haenszel (conditional)
	0.74

	
	
	Random effects (conditional)
	0.74


Assumes risk of adverse event = 0.05 (5%) in both the standard and new drug or therapy.  and threshold for demonstrating noninferiority is being able to rule out a risk difference of 1% point, or a risk of 0.06 (6%) in the new drug or treatment. Simulations were performed as follows:   (1)  Random intercept assumes that baseline risk of adverse event could vary from 2% to 14% across institutions (±2 sd on the logit scale) and that odds ratios could vary from 0.61 to 1.64 ((±2 sd on the logit scale). (2) A confirmation of noninferiority was achieved if the upper bound on a 90% two-sided confidence interval was less than 0.06.   The power represents the fraction of 999 simulations in which the new drug or treatment would be declared to have a risk not higher than 6%.  All computations were performed using STATA v.7.0 (Stata Corp, College Stations TX)
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Meta analyses

Meta analysis has become a common and accepted method of aggregating quantitative reports to allow sufficient statistical power to study either rare events or subgroups of patients.   The benefits (and challenges) of meta analysis in the field of pharmacoepidemiology, and especially in the study of adverse events, has been well-described (Berlin 2000).    When many studies are designed to demonstrate efficacy and are underpowered to reveal differences in risk of adverse events, meta-analysis can increase statistical power to assess the determinants of adverse events.   Of special benefit are the opportunities to generalize across diverse settings and populations, while still being able to examine the potential sources of heterogeneity.

Meta analyses can be defined by the unit of observation.   Most commonly, the meta analyst has access only the summary data from a study.  That might be the summary characteristics of patients (mean age) and outcome (the number of adverse events).    With access to the individual patient-level data from the various studies, the investigator could proceed just as a multicenter analysis.   Differences among the protocols of the studies being combined usually lead to substantial variation in risks and treatment effects.   As a result, random effects methods that allow for variation in treatment effectiveness across protocols are usually needed, and reporting and explaining among-study heterogeneity becomes important.

If, as is more likely, only study-level data are available, the investigator faces problems of ecological bias, confounding by patient level factors, and inability to distinguish the influence of an exposure on an individual and on a group of individuals.   (Berlin 2001)  

Contrary to the assertions of its proponent (King 1997), the “solution” to the problem of ecological inference solved little (McCue 2001).    Study-level averages of patient-level factors will not suffice.   For example, if the goal of the study is to assess whether efforts to reduce adverse events have been less effective on patients of lower socioeconomic status (poverty), the proxy for status might be the percentage of patients insured by Medicaid in the study.    The meta-analysis of summary data will not be able to distinguish between two factors: (1) the effect of poverty on the risk of an adverse event, and (2) the effect of being treated in a setting that serves larger fractions of the poor.   The problem is related not only to the potential bias of ecological analyses, but also to the field of contextual analysis. (Diez-Roux 2000)    In these instances, the influence of the exposure at the individual level and the cluster level might be quite different.

These statistical issues meta analysis shares with preplanned multicenter studies.  Unlike pre-planned study, the meta analysis cannot predefine and obtain advance access to the centers.    Selective reporting (or selective denial of access) might be especially harmful to the retrospective combination of studies or databases on adverse events.    This “publication” bias (where publication refers to access to the data) becomes entangled with adjustment for heterogeneity of effects.   If smaller studies show larger effects, larger, “negative” studies might be less likely to be publicized and included in a meta analysis.   To the extent that random effects methods of combining data give added weight to the more extreme results, the bias in reporting could lead to bias in the pooled measures of effect size.  (Berlin 2000).  

More recently, estimating effect modification has become a goal of meta analysis.  In the context of the study of adverse events, effect modification might occur if an intervention designed to reduce the risk of adverse drug events seemed to be effective only in the younger patients and not in the older ones.  At  least one meta analysis has already been done on adverse events (Lazarou 1998), limited to estimating incidence.   Of more importance, however, would be meta analyses of a series of studies on the effectiveness of interventions or on the relative risk of adverse events in two alternative therapies or two types of organizations.   Both would correspond to meta analyses now routinely done on the effect of treatment or the risk of exposure.  

Equally important, as meta analyses focus more on effect modification, only those with access to patient level data will be able to combine data to answer these questions.   Iinvestigators should be preserving and making available the patient-level data for subsequent meta-analysis.  But the subject matter of the investigation might often force investigators to limit access to patient-level information.    For this reason, meaningful meta analyses of studies of adverse events might be far more difficult than for studies of other medical outcomes.  

Table 11.   Statistical issues for meta-analyses on adverse events

	Problem
	Statistical Challenge

	Ecological bias in group level analyses


	Obtain patient-level, deidentified data

	Distinguishing patient-level and group-level effects (the context) of the same exposure


	Use hierarchical models with individual and group level covariates

	Effect modification 


	Group level data can hide true effect

	Heterogeneity across studies


	Give appropriate weight to small studies

	Bias from selective reporting (publication bias)


	Use several statistical methods to combine studies


Confounding in multi-center studies

Multicenter studies face special risks of confounding by center.   This issue has been discussed recently in the biostatistics (Berlin  1999; Neuhaus 1998), public health (Neuhaus 2001), and medical literature (Localio 2001). In a study of adverse events, the hypothesis might be that adverse events are more likely to occur to hospitalized Medicaid recipients or uninsured patients because they (1) have higher rates of illiteracy, and (2) lack the type of family support structures of insured families.   The proposed intervention might direct remedial measures towards educating this group of patients towards the proper use of medications, but an observational study must confirm the existence of the disparities in the risk of adverse events.  The initial finding is a strong association between insurance status and risk of adverse events, after extensive controlling for differences in patient illnesses.    Confidence intervals are adjusted for the non-independence of individual patient observations within each hospital, as one should always do for these multicenter observational studies.   Yet, an important additional analysis remains to be done.

In studies of utilization or outcome by patient characteristic, there are two potential sources of observed association.   One source could be an actual association in the risk of adverse events to patients within a single hospital owing to the hypothesized disparities in patient literacy and family support.   Another source, however, might be statistical counfounding.    Rates of adverse drug events differ across hospitals.   At the same time, hospitals frequently serve very different populations, with some caring for a larger percentage of insured patients than others.  If there is an association between hospital and outcome (adverse event) and an association between hospital and the factor of interest (insurance status), the ingredients for confounding by hospital are present.   In statistical terms, the adjusted odds ratio of the risk of an adverse event and a patient’s medical insurance might be biased in either direction.  In descriptive terms, the Medicaid and uninsured patients suffer from higher risks of adverse events not because of their insurance status but because they seek care at hospitals that carry a higher risk of an event for all patients, regardless of insurance.   

This design issue arises frequently in observational studies.  In randomized studies it can arise unless the randomization is balanced within each center in a multi-center study.   Balance means that each study center must enroll a common fraction of patients of each class of interest (such as insurance status).   This type of confounding might arise in a randomized study if some centers enrolled relatively many Medicaid recipients and others enrolled few.    

Confounding by center can also occur for the study of effect modification when both the size of effect modification and the risk of adverse events vary across centers.   (Berlin 2001)   

Fortunately, standard software for the analysis of multicenter studies can be programmed to estimate two sources of differences: (1) the within-hospital differences in adverse events due to insurance status of the patient, and (2) the among-hospital component representing the relationship between the fraction of patients who are insured and the hospital’s overall risk of adverse events.  

Table 12 provides an example of this effect by a series of simulations of 30 hospitals of between 20 and 50 patients each.  The goal might be to assess the association between an adverse event and a patient-level risk factor, such as insurance status.  The columns on the right show the estimates from the three regression models when the true relative risk is 1.5 and baseline risk is 0.05: a cluster-specific (CS) random intercept logistic regression model, and  two population average methods (PA) from generalized estimating equations (GEE) and a survey sampling program (SVY).    All methods would account for the increase in variance owing to the clustering of patients within hospitals.   

The bottom panel demonstrates an expected result without confounding.  When there is only random allocation of both events and the risk factor (insurance status, for example) across hospitals, the rates of adverse events and the prevalences of insurance status vary across hospitals, but not significantly (the p-values are very high).   The correlation between outcome and risk factor across the hospitals is 0.04, and departs from 0.0 only because of sampling error.   All three observed odds ratios are unbiased, i.e, they are either identical with the true result (1.54) or only slightly different because of the variability of the simulation.   

By contrast, in the top two panels, both the risk of adverse events and the prevalence of the risk factor vary across hospitals, and those two rates are correlated, the observed odds ratios are biased away from the 1.0.   In the top panel, the dispersion of outcomes and risk factor is modest.   For the outcome, the p-values for the dispersion are greater than 0.05  because the overall risk of adverse events is low.   The statistical significance of the variation in prevalence shows greater statistical significance because of the higher baseline prevalence (0.2).    As the correlation increases, the bias in the observed odds ratio also increases.   In the top panel, the amount of bias is small to modest.  As the degree of non-random dispersion of risk of outcome and prevalence of the risk factor increases, and as the correlation of the two increases, the bias becomes substantial. (middle panel)   The degree of bias depends also on the method of analysis.  The survey sampling method, a legitimate method for the analysis of multi-center clustered data for randomized or observational studies, (LaVange 2001), is most sensitive to confounding by center.
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Table 12.   The impact of confounding by center on estimates of association of patient-level factors, as a function of dispersion of outcome and risk factors across centers and correlation of outcome and risk factors by center.    Means of 500 simulations of binary outcome data.   Baseline risk = 0.05.   RR=1.5.  Prevalence of the risk factor=0.2 overall.   30 centers, from 20<patients<50 per center.

	
	Center specific rates
	p-values for association of y or x with center
	Spearman

Corr (x,y)
	Observed Odds Ratio

(True = 1.54) 

	
	AE
	factor
	AE
	factor
	
	CS
	PA=GEE
	PA=SVY

	Mild variation of outcome (y) and risk factor (x) across centers

Confounding produces bias away from 1.0



	min
	<0.001
	0.02
	0.2
	0.001
	0.16
	1.60
	1.58
	1.64

	25th
	0.02
	0.12
	
	0.27
	1.66
	1.64
	1.78

	med
	0.05
	0.20
	
	0.36
	1.72
	1.70
	1.91

	75th
	0.10
	0.30
	

	max
	0.24
	0.56
	

	Moderate variation outcome (y) and risk factor (x) across centers

Confounding produces bias away from 1.0

	min
	0.0
	0.01
	0.03
	<0.001
	0.19
	1.62
	1.57
	1.71

	25th
	0.02
	0.11
	
	0.32
	1.68
	1.63
	1.97

	med
	0.05
	0.20
	
	0.44
	1.76
	1.72
	2.27

	75th
	0.11
	0.34
	

	max
	0.35
	0.68
	

	Only random variation of outcome (y) and risk factor (x) across centers

No confounding

	min
	<0.001
	0.07
	0.83
	0.46
	0.04
	1.54
	1.53
	1.53

	25th
	0.03
	0.15
	

	med
	0.05
	0.20
	

	75th
	0.08
	0.25
	

	max
	0.15
	0.35
	


Notes.   The simulations fixed the dispersion of the outcome and risk factor across centers, and the correlation between these two dispersion parameters.   Spearman correlation coefficients computed to reflect a simple measure of the resulting correlation.   p-values reflect the test of whether outcome (adverse event) or risk factor (insurance status) are significantly different across centers (hospital).   Observed odds ratios: (1) CS= a cluster-specific, random intercept model using the “xtlogit” program in STATA v 6.0.  (2) GEE is a population average (PA) method, here assuming an exchangeable correlation structure, and (3) a survey sampling method (SVY) that is equivalent to GEE with an independence correlation structure.   All three models estimate the association between adverse event and the risk factor, which is stipulated in the simulation to be a RR=1.5.    

Cost Effectiveness of Treatment

The traditional methodology for dealing with clinical tradeoffs of risk, benefit, and cost is cost effectiveness (or cost utility) analysis.   Although cost effectiveness analyses are common, we see them largely in the context of assessing the effectiveness of new therapies.  We do not see such analyses in the dialog about adverse events per se.    Costs of therapy also enter the risks and benefits equation, for society cannot afford a therapy with positive net benefits if the cost is extreme.    

A standard metric for assessing effectiveness has been the year of life gained (or quality adjusted years).   (Gold 1996).    One reason for estimating years of life gained under alternative therapies stems from the common understanding that an intervention that will save 10 years of life among 1000 persons should be valued more than another that saves 1 month of life among 1000.   Yet, this distinction has evoked substantial controversy among leaders in the field of improving patient safety.   (Leape 2000, McDonald 2000).    One view seems to be that the absolute number of adverse events is high and demands an intervention.   Another seems to be that we must assess the impact of adverse events on life expectancy.  

Estimating the effectiveness of disparate endpoints is a challenge. Years of life saved can be estimated by extensive longitudinal followup of patients enrolled or followed.   But the quality of these years of life requires comparisons of utilities across an array of disabilities, health statuses, and functional states.    Investigators must resort to separate studies to elicit from patients their relative utilities.(Drummond 1997)  Therefore, simply to estimate effectiveness necessitates a series of underlying estimation steps.  Each of these underlying estimates carries uncertainty, which should be expressed in terms of variance

Although costs, expressed in discounted dollars, might be easy to estimate intuitively, they vary widely by patient, hospital or clinic, and location.   Costs are known to have non-normal distributions.(O’Hagen 2001).  If there are adverse event, and those are rare, then a few people will have very large costs and most people will have few costs.   Costs of treatment (and the complications of treatment) are highly variable, generating heavily skewed and sometimes multi-modal distributions. Although by the central limit theorem, the mean of a distribution of costs in the sample should be nearly normal regardless of the distribution of costs in the population (Altman 1991), that theorem applies only when the sample is large   To achieve the benefits of the central limit theorem, the sample sizes for each group of patients must be large.  How large is “large” depends on the degree of departure from normality of the distribution of these costs.   

The standard metric for measuring cost effectiveness is the ratio of the difference in the mean costs of two interventions divided by the difference in effectiveness. The numerator in this ratio is the differences in means in two, independent groups.   The variance of the means of costs is therefore the sum of the variances.  The need to add together already large variances leads to even larger variances of the numerator.  The denominator of the cost effectiveness ratio is also the differences in rates or utilities, and those variances must be summed to arrive at the variance of the denominator.  The cost effectiveness estimate is a “ratio estimator”.   Its variance, a complex combination of the variance of numerator and denominator (Casella 1990), includes a sum of a function of the variance of the difference of costs and a function of the variance of the difference in the effectiveness, but subtracts a function of the covariance of these two variances.   Thus, the variance of the cost effectiveness ratio depends on the correlation of costs and effectiveness.   The implications of computing ratios of differences is that variances tend to be enormous and as a result the sample size needed to place even a moderately narrow confidence interval about an estimate tend to be huge  (Gardiner 2000) and often not reliable (Heitjan 1999) 

Because of these difficulties in computing confidence intervals under assumptions of normality that are speculative, researchers now look to computer intensive resampling methods (Chaudhary 1996; O’Brien 1994; Polsky 1996; Indurkhya 2001) or Monte-Carlo- simulation- based Bayesian methods (Heitjan 1999; O’Hagen 2001, 2001a)

To assemble such a large sample requires multiple centers.   But because these estimates of costs and effectiveness will vary by center, the investigator must then consider the implications in design and power of the among-center components of variance   Little in the statistical literature addresses the complexity of computing correct confidence bounds for multicenter cost-effectiveness analyses.  .    

Table 13.  Special challenges of comparing costs, utilities, and effectiveness of treatments and their adverse events

	Problem 
	Statistical Challenge



	Risk of treatment failure and risk of adverse events can be correlated
	Estimates of effectiveness must consider multiple, correlated  outcomes per patient 

	Costs of treatment and adverse events vary considerably across patients


	Estimates of mean costs and differences in means require huge sample sizes for even moderate confidence intervals

	Cost effectiveness ratios needed to compare interventions 
	Large and skewed confidence intervals result.   Require computer- intensive Monte Carlo or resampling methods

	Utilities of endpoints of require estimation
	Conduct standard gamble or time tradeoff assessments

	Large sample sizes require multi-center trails of costs and effectiveness
	Multicenter designs add components of variance to already complex estimators


Comments:

Careful investigation of the epidemiology of adverse events poses severe challenges in terms of sample size, study design, and analysis.  These challenges represent some of the worst of all statistical worlds: rare outcomes, multiple endpoints with often disappointing reliability and misclassification, heterogeneity across centers, and substantial variation across patients within centers.    This sketch of the issues selectively outlined the statistical challenges.   That they represent challenges should not dissuade the investigator.   The alternatives of anecdote or politically driven initiatives will not suffice.

Hunches and intuitive impressions are essential for getting the work started, but it is only through the quality of the numbers at the end that the truth can be told.  (Lewis Thomas 1977)
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