Acute cardio-respiratory effects of SO$_2$ and NO$_2$ exposure in southern Israel

Michael Gdalevich1, MD, MPH, David Broday2, PhD, Yuval2, PhD, Ravit Bassal1, Haim Bibi3, MD, Shimon Scharf1, MD, MPH, and Michael Huerta1, MD, MPH

1Ashkelon District Health Office, Ben Gurion University of the Negev, Barzilai Medical Center, Ashkelon; 2Technion - Israel Institute of Technology, Department of Civil and Environmental Engineering, Haifa; 3Department of Pediatrics, Carmel Medical Center, Haifa, Israel.
• Impact of NO$_2$ and SO$_2$ on morbidity and mortality has been widely reported

• Population-based studies of air pollution have shown an association with cardiac and respiratory mortality

• NO$_2$, SO$_2$(and O$_3$, PM$_{2.5}$) have been shown to be associated with increased hospital admissions:
 – acute cardiovascular disease
 – pneumonia
 – COPD exacerbation
 – stroke
Background (2)

- Effects on cardiovascular and respiratory disease assessed in North America, Europe, Australia, Asia

- Few reports to date from Middle Eastern countries
 - climate differs from other areas
 - temperature shown to modify effects of air pollution
 - characteristics and composition of air pollution
 - background illness and lifestyles
 - magnitude of effect
Study objective

• Quantify short-term effects of NO₂ and SO₂ on cardiovascular and respiratory emergency department patient load in southern Israel

• Adjust for effects of other pollutants (NO₂, SO₂, PM₂.5) and for additional potential confounding variables

• Examine effects of lag period
Methods: study area

- Ashkelon located on the southern Mediterranean coast of Israel
- Population approximately 110,000
Methods: exposure data

• Network of 9 ambient outdoor air monitoring stations

• Continuous 5-minute data collection:
 – NO₂, SO₂, O₃, PM₂.5
 – temperature, relative humidity, barometric pressure
 – precipitation, wind speed, wind direction

• 12-hour means, cut at 6_AM and 6_PM, based on:
 – primary analysis of meteorological characteristics
 – traffic and work day patterns

• Study window 2000-2004 = 3,162 half-day periods

• >99% data completeness

• Interpolation of grid values using kriging method
Methods: outcome data

- ~400,000 computerized ED records obtained from Barzilai Medical Center – sole Ashkelon hospital
- ED data based on ICD-9 diagnostic codes
- High specificity conditions, likely to be assigned accurately (low false positive rate)
- Acute ischemic heart disease, MI, chest pain
 - ICD-9 codes 410, 411, 413, 786.5
- Asthma, wheezing, cough
 - ICD-9 codes 493, 786.07, 786.2
- ED patient count data, summed by 12-hour periods
- Same-period counts and 12-hour lag counts
Methods: model construction (1)

- **Data management**
 - Categorization of outcome variables
 - heaviest vs lightest ED loads (highest 20% vs lowest 20%)
 - Logarithmic transformation of pollutant data, entered as continuous variables

- **Data analysis**
 - Logistic regression, adjusted for potential confounders
 - Poisson regression (number of daily admissions) – assess the risks of single-unit increase in pollutant concentration
 - Separate analyses for day and night data
Methods: model construction (2)

• Univariate model
• Multivariate, single-pollutant model, adjusted for:
 – month
 – weekday/weekend
 – time of day (12 hr period)
 – precipitation
 – wind speed
• Multivariate, multiple-pollutant model
 – NO₂
 – SO₂
 – PM_{2.5}
Results: mean NO₂ concentration, by type of day

Mean weekday NO₂ (µg/m³)

Mean weekend NO₂ (µg/m³)
Mean SO$_2$ concentration, by wind direction

Wind from northwest (300-330°)

Wind from southeast (120-150°)

Copyright 2007, Michael Gdalevich, michael_g@barzi.health.gov.il
Results: Air pollution and ED patient load

odds ratio for heavy patient load

<table>
<thead>
<tr>
<th></th>
<th>Cardiac</th>
<th>Respiratory</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO\textsubscript{2}</td>
<td>1.21 (0.92-1.59)</td>
<td>1.16 (0.86-1.56)</td>
<td>1.45 (1.09-1.93)</td>
</tr>
<tr>
<td>NO\textsubscript{2}</td>
<td>1.27 (0.94-1.73)</td>
<td>1.82 (1.28-2.58)</td>
<td>2.34 (1.69-3.23)</td>
</tr>
</tbody>
</table>

Adjusted for: month, weekday/weekend, time of day, precipitation, wind speed, \textit{NO}_2, \textit{SO}_2, \textit{PM}_2\textsubscript{.5
Results: AP and ED patient load – 12hr lag
odds ratio for heavy patient load

<table>
<thead>
<tr>
<th></th>
<th>Cardiac</th>
<th>Respiratory</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO₂</td>
<td>0.94 (0.72-1.22)</td>
<td>1.02 (0.77-1.37)</td>
<td>1.13 (0.86-1.49)</td>
</tr>
<tr>
<td>NO₂</td>
<td>1.31 (0.96-1.79)</td>
<td>1.99 (1.40-2.83)</td>
<td>2.39 (1.74-3.30)</td>
</tr>
</tbody>
</table>

Adjusted for: month, weekday/weekend, time of day, precipitation, wind speed, NO₂, SO₂, PM₂.₅
• Poisson regression demonstrated similar associations with overall ED load:
 – NO₂: RR=1.002 (95%CI 1.001-1.003)
 – SO₂: RR=1.007 (95%CI 1.003-1.010)

• A 10 mcg/m³ increase in ambient NO₂ concentration increased the probability of an unusually heavy ED patient load by 2%.

• The same increase in SO₂ increased the probability of an unusually heavy ED patient load by 7%.
Conclusions

• Overall acute cardiac and respiratory ED patient load
 – stronger association with NO₂; significant in all models
• High-specificity respiratory diagnoses
 – substantial association with NO₂, none – with SO₂
• High-specificity cardiac diagnoses
 – significant in adjusted single-pollutant models
 – non-significant in 3-pollutant models, likely due to insufficient study power
• Similar results for 0 and 12hr lag periods
• Day of week and time of day are strong confounders
 – importance of 12hr data frame
 – must be included in multivariate analyses
This research was partially funded by a grant awarded by the Israeli Ministry of Science and Technology.

Oversight: Dr Shlomo Sarig